set_profiles {evprof} | R Documentation |
Classify sessions into user profiles
Description
Joins all sub-sets from the list, adding a new column Profile
Usage
set_profiles(sessions_clustered = list(), clusters_definition = list())
Arguments
sessions_clustered |
list of tibbles with sessions clustered
( |
clusters_definition |
list of tibbles with clusters definitions
(direct output from function |
Value
tibble
Examples
library(dplyr)
# Select working day sessions (`Timecycle == 1`) that
# disconnect the same day (`Disconnection == 1`)
sessions_day <- california_ev_sessions %>%
divide_by_timecycle(
months_cycles = list(1:12), # Not differentiation between months
wdays_cycles = list(1:5, 6:7) # Differentiation between workdays/weekends
) %>%
divide_by_disconnection(
division_hour = 10, start = 3
) %>%
filter(
Disconnection == 1, Timecycle == 1
) %>%
sample_frac(0.05)
# Identify two clusters
sessions_clusters <- cluster_sessions(
sessions_day, k=2, seed = 1234, log = TRUE
)
# Plot the clusters found
plot_bivarGMM(
sessions = sessions_clusters$sessions,
models = sessions_clusters$models,
log = TRUE, start = 3
)
# Define the clusters with user profile interpretations
clusters_definitions <- define_clusters(
models = sessions_clusters$models,
interpretations = c(
"Connections during working hours",
"Connections during all day (high variability)"
),
profile_names = c("Workers", "Visitors"),
log = TRUE
)
# Classify each session to the corresponding user profile
sessions_profiles <- set_profiles(
sessions_clustered = list(sessions_clusters$sessions),
clusters_definition = list(clusters_definitions)
)
[Package evprof version 1.1.2 Index]