plot_bivarGMM {evprof} | R Documentation |
Plot Bivariate Gaussian Mixture Models
Description
Plot Bivariate Gaussian Mixture Models
Usage
plot_bivarGMM(
sessions,
models,
profiles_names = seq(1, nrow(models)),
points_size = 0.25,
lines_size = 1,
legend_nrow = 2,
log = FALSE,
start = getOption("evprof.start.hour")
)
Arguments
sessions |
tibble, sessions data set in evprof standard format. |
models |
tibble, parameters of the clusters' GMM models obtained with
function |
profiles_names |
names of profiles |
points_size |
size of scatter points in the plot |
lines_size |
size of lines in the plot |
legend_nrow |
number of rows in legend |
log |
logical, whether to transform |
start |
integer, start hour in the x axis of the plot. |
Value
ggplot2 plot
Examples
library(dplyr)
# Select working day sessions (`Timecycle == 1`) that
# disconnect the same day (`Disconnection == 1`)
sessions_day <- california_ev_sessions %>%
divide_by_timecycle(
months_cycles = list(1:12), # Not differentiation between months
wdays_cycles = list(1:5, 6:7) # Differentiation between workdays/weekends
) %>%
divide_by_disconnection(
division_hour = 10, start = 3
) %>%
filter(
Disconnection == 1, Timecycle == 1
) %>%
sample_frac(0.05)
plot_points(sessions_day, start = 3)
# Identify two clusters
sessions_clusters <- cluster_sessions(
sessions_day, k=2, seed = 1234, log = TRUE
)
# Plot the clusters found
plot_bivarGMM(
sessions = sessions_clusters$sessions,
models = sessions_clusters$models,
log = TRUE, start = 3
)
[Package evprof version 1.1.2 Index]