get_connection_models {evprof} | R Documentation |
Get a tibble of connection GMM for every user profile
Description
Get a tibble of connection GMM for every user profile
Usage
get_connection_models(
subsets_clustering = list(),
clusters_definition = list()
)
Arguments
subsets_clustering |
list with clustering results of each subset
(direct output from function |
clusters_definition |
list of tibbles with clusters definitions
(direct output from function |
Value
tibble
Examples
library(dplyr)
# Select working day sessions (`Timecycle == 1`) that
# disconnect the same day (`Disconnection == 1`)
sessions_day <- california_ev_sessions %>%
divide_by_timecycle(
months_cycles = list(1:12), # Not differentiation between months
wdays_cycles = list(1:5, 6:7) # Differentiation between workdays/weekends
) %>%
divide_by_disconnection(
division_hour = 10, start = 3
) %>%
filter(
Disconnection == 1, Timecycle == 1
) %>%
sample_frac(0.05)
plot_points(sessions_day, start = 3)
# Identify two clusters
sessions_clusters <- cluster_sessions(
sessions_day, k=2, seed = 1234, log = TRUE
)
# Plot the clusters found
plot_bivarGMM(
sessions = sessions_clusters$sessions,
models = sessions_clusters$models,
log = TRUE, start = 3
)
# Define the clusters with user profile interpretations
clusters_definitions <- define_clusters(
models = sessions_clusters$models,
interpretations = c(
"Connections during working hours",
"Connections during all day (high variability)"
),
profile_names = c("Workers", "Visitors"),
log = TRUE
)
# Create a table with the connection GMM parameters
get_connection_models(
subsets_clustering = list(sessions_clusters),
clusters_definition = list(clusters_definitions)
)
[Package evprof version 1.1.2 Index]