abm.saa {evoper} | R Documentation |
abm.saa
Description
An implementation of Simulated Annealing Algorithm optimization method for parameter estimation of Individual-based models.
Usage
abm.saa(objective, options = NULL)
Arguments
objective |
An instance of ObjectiveFunction (or subclass) class ObjectiveFunction |
options |
An apropiate instance from a sublclass of Options class |
Value
The best solution.
References
[1] Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598).
Examples
## Not run:
f<- PlainFunction$new(f0.rosenbrock2)
f$Parameter(name="x1",min=-100,max=100)
f$Parameter(name="x2",min=-100,max=100)
extremize("saa", f)
## End(Not run)
## Not run:
## A Repast defined function
f<- RepastFunction$new("/usr/models/BactoSim(HaldaneEngine-1.0)","ds::Output",300)
## or a plain function
f1<- function(x1,x2,x3,x4) {
10 * (x1 - 1)^2 + 20 * (x2 - 2)^2 + 30 * (x3 - 3)^2 + 40 * (x4 - 4)^2
}
f<- PlainFunction$new(f1)
f$addFactor(name="cyclePoint",min=0,max=90)
f$addFactor(name="conjugationCost",min=0,max=100)
f$addFactor(name="pilusExpressionCost",min=0,max=100)
f$addFactor(name="gamma0",min=1,max=10)
abm.saa(f, 100, 1, 100, 0.75)
## End(Not run)
[Package evoper version 0.5.0 Index]