PCAsimilarity {evolqg} | R Documentation |
Compare matrices using PCA similarity factor
Description
Compare matrices using PCA similarity factor
Usage
PCAsimilarity(cov.x, cov.y, ...)
## Default S3 method:
PCAsimilarity(cov.x, cov.y, ret.dim = NULL, ...)
## S3 method for class 'list'
PCAsimilarity(cov.x, cov.y = NULL, ..., repeat.vector = NULL, parallel = FALSE)
## S3 method for class 'mcmc_sample'
PCAsimilarity(cov.x, cov.y, ..., parallel = FALSE)
Arguments
cov.x |
Single covariance matrix or list of covariance matrices. If cov.x is a single matrix, it is compared to cov.y. If cov.x is a list and no cov.y is supplied, all matrices are compared to each other. If cov.x is a list and cov.y is supplied, all matrices in cov.x are compared to cov.y. |
cov.y |
First argument is compared to cov.y. |
... |
additional arguments passed to other methods |
ret.dim |
number of retained dimensions in the comparison. Defaults to all. |
repeat.vector |
Vector of repeatabilities for correlation correction. |
parallel |
if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC. |
Value
Ratio of projected variance to total variance
Author(s)
Edgar Zanella Alvarenga
References
Singhal, A. and Seborg, D. E. (2005), Clustering multivariate time-series data. J. Chemometrics, 19: 427-438. doi: 10.1002/cem.945
See Also
KrzProjection
,KrzCor
,RandomSkewers
,MantelCor
Examples
c1 <- RandomMatrix(10)
c2 <- RandomMatrix(10)
PCAsimilarity(c1, c2)
m.list <- RandomMatrix(10, 3)
PCAsimilarity(m.list)
PCAsimilarity(m.list, c1)