BootstrapRep {evolqg} | R Documentation |
Bootstrap analysis via resampling
Description
Calculates the repeatability of the covariance matrix of the supplied data via bootstrap resampling
Usage
BootstrapRep(
ind.data,
ComparisonFunc,
iterations = 1000,
sample.size = dim(ind.data)[1],
correlation = FALSE,
parallel = FALSE
)
Arguments
ind.data |
Matrix of residuals or individual measurements |
ComparisonFunc |
comparison function |
iterations |
Number of resamples to take |
sample.size |
Size of resamples, default is the same size as ind.data |
correlation |
If TRUE, correlation matrix is used, else covariance matrix. |
parallel |
if TRUE computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC. |
Details
Samples with replacement are taken from the full population, a statistic calculated and compared to the full population statistic.
Value
returns the mean repeatability, that is, the mean value of comparisons from samples to original statistic.
Author(s)
Diogo Melo, Guilherme Garcia
See Also
Examples
BootstrapRep(iris[,1:4], MantelCor, iterations = 5, correlation = TRUE)
BootstrapRep(iris[,1:4], RandomSkewers, iterations = 50)
BootstrapRep(iris[,1:4], KrzCor, iterations = 50, correlation = TRUE)
BootstrapRep(iris[,1:4], PCAsimilarity, iterations = 50)
#Multiple threads can be used with some foreach backend library, like doMC or doParallel
#library(doParallel)
##Windows:
#cl <- makeCluster(2)
#registerDoParallel(cl)
##Mac and Linux:
#registerDoParallel(cores = 2)
#BootstrapRep(iris[,1:4], PCAsimilarity,
# iterations = 5,
# parallel = TRUE)
[Package evolqg version 0.3-4 Index]