normgpd {evmix} | R Documentation |
Normal Bulk and GPD Tail Extreme Value Mixture Model
Description
Density, cumulative distribution function, quantile function and
random number generation for the extreme value mixture model with normal for bulk
distribution upto the threshold and conditional GPD above threshold. The parameters
are the normal mean nmean
and standard deviation nsd
, threshold u
GPD scale sigmau
and shape xi
and tail fraction phiu
.
Usage
dnormgpd(x, nmean = 0, nsd = 1, u = qnorm(0.9, nmean, nsd),
sigmau = nsd, xi = 0, phiu = TRUE, log = FALSE)
pnormgpd(q, nmean = 0, nsd = 1, u = qnorm(0.9, nmean, nsd),
sigmau = nsd, xi = 0, phiu = TRUE, lower.tail = TRUE)
qnormgpd(p, nmean = 0, nsd = 1, u = qnorm(0.9, nmean, nsd),
sigmau = nsd, xi = 0, phiu = TRUE, lower.tail = TRUE)
rnormgpd(n = 1, nmean = 0, nsd = 1, u = qnorm(0.9, nmean, nsd),
sigmau = nsd, xi = 0, phiu = TRUE)
Arguments
x |
quantiles |
nmean |
normal mean |
nsd |
normal standard deviation (positive) |
u |
threshold |
sigmau |
scale parameter (positive) |
xi |
shape parameter |
phiu |
probability of being above threshold |
log |
logical, if TRUE then log density |
q |
quantiles |
lower.tail |
logical, if FALSE then upper tail probabilities |
p |
cumulative probabilities |
n |
sample size (positive integer) |
Details
Extreme value mixture model combining normal distribution for the bulk below the threshold and GPD for upper tail.
The user can pre-specify phiu
permitting a parameterised value for the tail fraction \phi_u
. Alternatively, when
phiu=TRUE
the tail fraction is estimated as the tail fraction from the
normal bulk model.
The cumulative distribution function with tail fraction \phi_u
defined by the
upper tail fraction of the normal bulk model (phiu=TRUE
), upto the
threshold x \le u
, given by:
F(x) = H(x)
and above the threshold x > u
:
F(x) = H(u) + [1 - H(u)] G(x)
where H(x)
and G(X)
are the normal and conditional GPD
cumulative distribution functions (i.e. pnorm(x, nmean, nsd)
and
pgpd(x, u, sigmau, xi)
) respectively.
The cumulative distribution function for pre-specified \phi_u
, upto the
threshold x \le u
, is given by:
F(x) = (1 - \phi_u) H(x)/H(u)
and above the threshold x > u
:
F(x) = \phi_u + [1 - \phi_u] G(x)
Notice that these definitions are equivalent when \phi_u = 1 - H(u)
.
See gpd
for details of GPD upper tail component and
dnorm
for details of normal bulk component.
Value
dnormgpd
gives the density,
pnormgpd
gives the cumulative distribution function,
qnormgpd
gives the quantile function and
rnormgpd
gives a random sample.
Note
All inputs are vectorised except log
and lower.tail
.
The main inputs (x
, p
or q
) and parameters must be either
a scalar or a vector. If vectors are provided they must all be of the same length,
and the function will be evaluated for each element of vector. In the case of
rnormgpd
any input vector must be of length n
.
Default values are provided for all inputs, except for the fundamentals
x
, q
and p
. The default sample size for
rnormgpd
is 1.
Missing (NA
) and Not-a-Number (NaN
) values in x
,
p
and q
are passed through as is and infinite values are set to
NA
. None of these are not permitted for the parameters.
Due to symmetry, the lower tail can be described by GPD by negating the quantiles.
The normal mean nmean
and GPD threshold u
will also require negation.
Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give warning message as appropriate.
Author(s)
Yang Hu and Carl Scarrott carl.scarrott@canterbury.ac.nz
References
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http://www.ine.pt/revstat/pdf/rs120102.pdf
Hu Y. and Scarrott, C.J. (2018). evmix: An R Package for Extreme Value Mixture Modeling, Threshold Estimation and Boundary Corrected Kernel Density Estimation. Journal of Statistical Software 84(5), 1-27. doi: 10.18637/jss.v084.i05.
Behrens, C.N., Lopes, H.F. and Gamerman, D. (2004). Bayesian analysis of extreme events with threshold estimation. Statistical Modelling. 4(3), 227-244.
See Also
Other normgpd: fgng
, fhpd
,
fitmnormgpd
, flognormgpd
,
fnormgpdcon
, fnormgpd
,
gngcon
, gng
,
hpdcon
, hpd
,
itmnormgpd
, lognormgpdcon
,
lognormgpd
, normgpdcon
Other normgpdcon: fgngcon
,
fhpdcon
, flognormgpdcon
,
fnormgpdcon
, fnormgpd
,
gngcon
, gng
,
hpdcon
, hpd
,
normgpdcon
Other gng: fgngcon
, fgng
,
fitmgng
, fnormgpd
,
gngcon
, gng
,
itmgng
Other fnormgpd: fnormgpd
Examples
## Not run:
set.seed(1)
par(mfrow = c(2, 2))
x = rnormgpd(1000)
xx = seq(-4, 6, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 6))
lines(xx, dnormgpd(xx))
# three tail behaviours
plot(xx, pnormgpd(xx), type = "l")
lines(xx, pnormgpd(xx, xi = 0.3), col = "red")
lines(xx, pnormgpd(xx, xi = -0.3), col = "blue")
legend("topleft", paste("xi =",c(0, 0.3, -0.3)),
col=c("black", "red", "blue"), lty = 1)
x = rnormgpd(1000, phiu = 0.2)
xx = seq(-4, 6, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 6))
lines(xx, dnormgpd(xx, phiu = 0.2))
plot(xx, dnormgpd(xx, xi=0, phiu = 0.2), type = "l")
lines(xx, dnormgpd(xx, xi=-0.2, phiu = 0.2), col = "red")
lines(xx, dnormgpd(xx, xi=0.2, phiu = 0.2), col = "blue")
legend("topleft", c("xi = 0", "xi = 0.2", "xi = -0.2"),
col=c("black", "red", "blue"), lty = 1)
## End(Not run)