gammagpdcon {evmix} | R Documentation |
Gamma Bulk and GPD Tail Extreme Value Mixture Model with Single Continuity Constraint
Description
Density, cumulative distribution function, quantile function and
random number generation for the extreme value mixture model with gamma for bulk
distribution upto the threshold and conditional GPD above threshold with continuity
at threshold. The parameters
are the gamma shape gshape
and scale gscale
, threshold u
GPD shape xi
and tail fraction phiu
.
Usage
dgammagpdcon(x, gshape = 1, gscale = 1, u = qgamma(0.9, gshape,
1/gscale), xi = 0, phiu = TRUE, log = FALSE)
pgammagpdcon(q, gshape = 1, gscale = 1, u = qgamma(0.9, gshape,
1/gscale), xi = 0, phiu = TRUE, lower.tail = TRUE)
qgammagpdcon(p, gshape = 1, gscale = 1, u = qgamma(0.9, gshape,
1/gscale), xi = 0, phiu = TRUE, lower.tail = TRUE)
rgammagpdcon(n = 1, gshape = 1, gscale = 1, u = qgamma(0.9, gshape,
1/gscale), xi = 0, phiu = TRUE)
Arguments
x |
quantiles |
gshape |
gamma shape (positive) |
gscale |
gamma scale (positive) |
u |
threshold |
xi |
shape parameter |
phiu |
probability of being above threshold |
log |
logical, if TRUE then log density |
q |
quantiles |
lower.tail |
logical, if FALSE then upper tail probabilities |
p |
cumulative probabilities |
n |
sample size (positive integer) |
Details
Extreme value mixture model combining gamma distribution for the bulk below the threshold and GPD for upper tail with continuity at threshold.
The user can pre-specify phiu
permitting a parameterised value for the tail fraction \phi_u
. Alternatively, when
phiu=TRUE
the tail fraction is estimated as the tail fraction from the
gamma bulk model.
The cumulative distribution function with tail fraction \phi_u
defined by the
upper tail fraction of the gamma bulk model (phiu=TRUE
), upto the
threshold 0 < x \le u
, given by:
F(x) = H(x)
and above the threshold x > u
:
F(x) = H(u) + [1 - H(u)] G(x)
where H(x)
and G(X)
are the gamma and conditional GPD
cumulative distribution functions (i.e. pgamma(x, gshape, 1/gscale)
and
pgpd(x, u, sigmau, xi)
) respectively.
The cumulative distribution function for pre-specified \phi_u
, upto the
threshold 0 < x \le u
, is given by:
F(x) = (1 - \phi_u) H(x)/H(u)
and above the threshold x > u
:
F(x) = \phi_u + [1 - \phi_u] G(x)
Notice that these definitions are equivalent when \phi_u = 1 - H(u)
.
The continuity constraint means that (1 - \phi_u) h(u)/H(u) = \phi_u g(u)
where h(x)
and g(x)
are the gamma and conditional GPD
density functions (i.e. dgammma(x, gshape, gscale)
and
dgpd(x, u, sigmau, xi)
) respectively. The resulting GPD scale parameter is then:
\sigma_u = \phi_u H(u) / [1 - \phi_u] h(u)
. In the special case of where the tail fraction is defined by the bulk model this reduces to
\sigma_u = [1 - H(u)] / h(u)
.
The gamma is defined on the non-negative reals, so the threshold must be positive.
Though behaviour at zero depends on the shape (\alpha
):
-
f(0+)=\infty
for0<\alpha<1
; -
f(0+)=1/\beta
for\alpha=1
(exponential); -
f(0+)=0
for\alpha>1
;
where \beta
is the scale parameter.
See gpd
for details of GPD upper tail component and
dgamma
for details of gamma bulk component.
Value
dgammagpdcon
gives the density,
pgammagpdcon
gives the cumulative distribution function,
qgammagpdcon
gives the quantile function and
rgammagpdcon
gives a random sample.
Note
All inputs are vectorised except log
and lower.tail
.
The main inputs (x
, p
or q
) and parameters must be either
a scalar or a vector. If vectors are provided they must all be of the same length,
and the function will be evaluated for each element of vector. In the case of
rgammagpdcon
any input vector must be of length n
.
Default values are provided for all inputs, except for the fundamentals
x
, q
and p
. The default sample size for
rgammagpdcon
is 1.
Missing (NA
) and Not-a-Number (NaN
) values in x
,
p
and q
are passed through as is and infinite values are set to
NA
. None of these are not permitted for the parameters.
Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give warning message as appropriate.
Author(s)
Yang Hu and Carl Scarrott carl.scarrott@canterbury.ac.nz
References
http://en.wikipedia.org/wiki/Gamma_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http://www.ine.pt/revstat/pdf/rs120102.pdf
Behrens, C.N., Lopes, H.F. and Gamerman, D. (2004). Bayesian analysis of extreme events with threshold estimation. Statistical Modelling. 4(3), 227-244.
See Also
Other gammagpd: fgammagpdcon
,
fgammagpd
, fmgammagpd
,
fmgamma
, gammagpd
,
mgammagpd
Other gammagpdcon: fgammagpdcon
,
fgammagpd
, fmgammagpdcon
,
gammagpd
, mgammagpdcon
Other mgammagpdcon: fgammagpdcon
,
fmgammagpdcon
, fmgammagpd
,
fmgamma
, mgammagpdcon
,
mgammagpd
, mgamma
Other fgammagpdcon: fgammagpdcon
Examples
## Not run:
set.seed(1)
par(mfrow = c(2, 2))
x = rgammagpdcon(1000, gshape = 2)
xx = seq(-1, 10, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 10))
lines(xx, dgammagpdcon(xx, gshape = 2))
# three tail behaviours
plot(xx, pgammagpdcon(xx, gshape = 2), type = "l")
lines(xx, pgammagpdcon(xx, gshape = 2, xi = 0.3), col = "red")
lines(xx, pgammagpdcon(xx, gshape = 2, xi = -0.3), col = "blue")
legend("bottomright", paste("xi =",c(0, 0.3, -0.3)),
col=c("black", "red", "blue"), lty = 1)
x = rgammagpdcon(1000, gshape = 2, u = 3, phiu = 0.2)
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 10))
lines(xx, dgammagpdcon(xx, gshape = 2, u = 3, phiu = 0.2))
plot(xx, dgammagpdcon(xx, gshape = 2, u = 3, xi=0, phiu = 0.2), type = "l")
lines(xx, dgammagpdcon(xx, gshape = 2, u = 3, xi=-0.2, phiu = 0.2), col = "red")
lines(xx, dgammagpdcon(xx, gshape = 2, u = 3, xi=0.2, phiu = 0.2), col = "blue")
legend("topright", c("xi = 0", "xi = 0.2", "xi = -0.2"),
col=c("black", "red", "blue"), lty = 1)
## End(Not run)