tune_cpdbee_2D {eventstream} | R Documentation |
Tunes 2D event detection using labeled data
Description
This function finds best parameters for 2D event detection using labeled data.
Usage
tune_cpdbee_2D(
x,
cl,
alpha_min = 0.95,
alpha_max = 0.98,
alpha_step = 0.01,
epsilon_min = 2,
epsilon_max = 12,
epsilon_step = 2,
minPts_min = 4,
minPts_max = 12,
minPts_step = 2
)
Arguments
x |
The data in an mxn matrix or dataframe. |
cl |
The actual locations of the events. |
alpha_min |
The minimum threshold value. |
alpha_max |
The maximum threshold value. |
alpha_step |
The incremental step size for alpha. |
epsilon_min |
The minimum epsilon value for DBSCAN clustering. |
epsilon_max |
The maximum epsilon value for DBSCAN clustering. |
epsilon_step |
The incremental step size for epsilon for DBSCAN clustering. |
minPts_min |
The minimum minPts value for for DBSCAN clustering. |
minPts_max |
The maximum minPts value for for DBSCAN clustering. |
minPts_step |
The incremental step size for minPts for DBSCAN clustering. |
Value
A list with following components
best |
The best threshold, epsilon and MinPts for 2D event detection and the associated Jaccard Index. |
all |
All parameter values used and the associated Jaccard Index values. |
Examples
## Not run:
out <- gen_stream(1, sd=15)
zz <- as.matrix(out$data)
clst <- get_clusters(zz, filename = NULL, thres = 0.95,
vis = TRUE, epsilon = 5, miniPts = 10,
rolling = FALSE)
clst_loc <- clst$data[ ,1:2]
out <- tune_cpdbee_2D(zz, clst_loc)
out$best
## End(Not run)