pbirth {event} | R Documentation |
Fit Overdispersed Count Data as a Birth Process
Description
pbirth
fits binomial, binomial exponential, binomial logistic,
binomial total, Poisson, Poisson exponential, negative binomial,
gen(eralized) negative binomial, and generalized negative binomial
processes as a birth process.
Usage
pbirth(frequencies, p, intensity="negative binomial",
type="spectral decomposition", print.level=0, ndigit=10,
gradtol=0.00001, steptol=0.00001, fscale=1, iterlim=100,
typsize=abs(p), stepmax=10*sqrt(p%*%p))
Arguments
frequencies |
Vector of frequencies or a matrix with each row a different series of frequencies. |
p |
Vector of initial estimates. |
intensity |
The intensity function of the process: binomial, binomial exdponential, binomial logistic, binomial total, Poisson, Poisson exponential, negative binomial, or gen(eralized) negative binomial. |
type |
Algorithm used for matrix exponentiation: spectral decomposition or series approximation. |
print.level |
|
ndigit |
|
gradtol |
|
steptol |
|
iterlim |
|
fscale |
|
typsize |
|
stepmax |
|
Author(s)
J.K. Lindsey
References
Faddy, M.J. and Fenlon, J.S. (1999) Stochastic modelling of the invasion process of nematodes in fly larvae. Applied Statistics 48: 31-37.
Examples
y <- rnbinom(100,2,0.6)
fr <- tabulate(y)
pbirth(fr, p=log(-log(0.7)), intensity="Poisson", type="series")
pbirth(fr, p=c(log(-log(0.7)),log(5)),
intensity="negative binomial", type="series")
pbirth(fr, p=c(log(-log(0.7)),log(5),-1),
intensity="gen negative binomial", type="series")