hgweibull {event} | R Documentation |
Log Hazard Function for a Generalized Weibull Process
Description
These functions provide information about the generalized Weibull
distribution, also called the exponentiated Weibull, with scale
parameter equal to m
, shape equal to s
, and family
parameter equal to f
: log hazard.
(See 'rmutil' for the d/p/q/r boxcox functions density,
cumulative distribution, quantiles, and random generation).
The generalized Weibull distribution has density
f(y) = \frac{\sigma \nu y^{\sigma-1} (1-\exp(-(y/\mu)^\sigma))^{\nu-1}
\exp(-(y/\mu)^\sigma)}{\mu^\sigma}
where \mu
is the scale parameter of the distribution,
\sigma
is the shape, and \nu
is the family
parameter.
\nu=1
gives a Weibull distribution, for
\sigma=1
, \nu<0
a generalized F distribution,
and for \sigma>0
, \nu\leq0
a Burr type XII distribution.
Usage
hgweibull(y, s, m, f)
Arguments
y |
vector of responses. |
m |
vector of location parameters. |
s |
vector of dispersion parameters. |
f |
vector of family parameters. |
Author(s)
J.K. Lindsey
See Also
dweibull
for the Weibull distribution,
df
for the F distribution,
dburr
for the Burr distribution.
Examples
hgweibull(5, 1, 3, 2)