| gpd {evd} | R Documentation |
The Generalized Pareto Distribution
Description
Density function, distribution function, quantile function and random generation for the generalized Pareto distribution (GPD) with location, scale and shape parameters.
Usage
dgpd(x, loc=0, scale=1, shape=0, log = FALSE)
pgpd(q, loc=0, scale=1, shape=0, lower.tail = TRUE)
qgpd(p, loc=0, scale=1, shape=0, lower.tail = TRUE)
rgpd(n, loc=0, scale=1, shape=0)
Arguments
x, q |
Vector of quantiles. |
p |
Vector of probabilities. |
n |
Number of observations. |
loc, scale, shape |
Location, scale and shape parameters; the
|
log |
Logical; if |
lower.tail |
Logical; if |
Details
The generalized Pareto distribution function (Pickands, 1975) with
parameters \code{loc} = a, \code{scale} = b and
\code{shape} = s is
G(z) = 1 - \{1+s(z-a)/b\}^{-1/s}
for 1+s(z-a)/b > 0 and z > a, where b > 0.
If s = 0 the distribution is defined by continuity.
Value
dgpd gives the density function, pgpd gives the
distribution function, qgpd gives the quantile function,
and rgpd generates random deviates.
References
Pickands, J. (1975) Statistical inference using extreme order statistics. Annals of Statistics, 3, 119–131.
See Also
Examples
dgpd(2:4, 1, 0.5, 0.8)
pgpd(2:4, 1, 0.5, 0.8)
qgpd(seq(0.9, 0.6, -0.1), 2, 0.5, 0.8)
rgpd(6, 1, 0.5, 0.8)
p <- (1:9)/10
pgpd(qgpd(p, 1, 2, 0.8), 1, 2, 0.8)
## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9