proDSval {evclass} | R Documentation |
Classification of a test set by the evidential neural network classifier
Description
proDSval
classifies instances in a test set using the evidential neural network classifier.
Usage
proDSval(x, param, y = NULL)
Arguments
x |
Matrix of size n x d, containing the values of the d attributes for the test data. |
param |
Neural network parameters, as provided by |
y |
Optional vector of class labels for the test data. May be a factor, or a vector of integers from 1 to M (number of classes). |
Details
If class labels for the test set are provided, the test error rate is also returned.
Value
A list with three elements:
- m
Predicted mass functions for the test data. The first M columns correspond to the mass assigned to each class. The last column corresponds to the mass assigned to the whole set of classes.
- ypred
Predicted class labels for the test data.
- err
Test error rate (if the class label of test data has been provided).
Author(s)
Thierry Denoeux.
References
T. Denoeux. A neural network classifier based on Dempster-Shafer theory. IEEE Trans. on Systems, Man and Cybernetics A, 30(2):131–150, 2000.
See Also
Examples
## Glass dataset
data(glass)
xapp<-glass$x[1:89,]
yapp<-glass$y[1:89]
xtst<-glass$x[90:185,]
ytst<-glass$y[90:185]
## Initialization
param0<-proDSinit(xapp,yapp,nproto=7)
## Training
fit<-proDSfit(xapp,yapp,param0)
## Test
val<-proDSval(xtst,fit$param,ytst)
## Confusion matrix
table(ytst,val$ypred)