proDSfit {evclass} | R Documentation |
Training of the evidential neural network classifier
Description
proDSfit
performs parameter optimization for the evidential neural network classifier.
Usage
proDSfit(
x,
y,
param,
lambda = 1/max(as.numeric(y)),
mu = 0,
optimProto = TRUE,
options = list(maxiter = 500, eta = 0.1, gain_min = 1e-04, disp = 10)
)
Arguments
x |
Input matrix of size n x d, where n is the number of objects and d the number of attributes. |
y |
Vector of class lables (of length n). May be a factor, or a vector of integers from 1 to M (number of classes). |
param |
Initial parameters (see |
lambda |
Parameter of the cost function. If |
mu |
Regularization hyperparameter (default=0). |
optimProto |
Boolean. If TRUE, the prototypes are optimized (default). Otherwise, they are fixed. |
options |
A list of parameters for the optimization algorithm: maxiter (maximum number of iterations), eta (initial step of gradient variation), gain_min (minimum gain in the optimisation loop), disp (integer; if >0, intermediate results are displayed every disp iterations). |
Details
If optimProto=TRUE
(default), the prototypes are optimized. Otherwise, they are fixed to
their initial value.
Value
A list with three elements:
- param
Optimized network parameters.
- cost
Final value of the cost function.
- err
Training error rate.
Author(s)
Thierry Denoeux.
References
T. Denoeux. A neural network classifier based on Dempster-Shafer theory. IEEE Trans. on Systems, Man and Cybernetics A, 30(2):131–150, 2000.
See Also
Examples
## Glass dataset
data(glass)
xapp<-glass$x[1:89,]
yapp<-glass$y[1:89]
xtst<-glass$x[90:185,]
ytst<-glass$y[90:185]
## Initialization
param0<-proDSinit(xapp,yapp,nproto=7)
## Training
fit<-proDSfit(xapp,yapp,param0)