gpdRl {eva} | R Documentation |
GPD Return Level Estimate and Confidence Interval for Stationary Models
Description
Computes stationary m-period return level estimate and interval for the Generalized Pareto distribution, using either the delta method or profile likelihood.
Usage
gpdRl(
z,
period,
conf = 0.95,
method = c("delta", "profile"),
plot = TRUE,
opt = c("Nelder-Mead")
)
Arguments
z |
An object of class ‘gpdFit’. |
period |
The number of periods to use for the return level. |
conf |
Confidence level. Defaults to 95 percent. |
method |
The method to compute the confidence interval - either delta method (default) or profile likelihood. |
plot |
Plot the profile likelihood and estimate (vertical line)? |
opt |
Optimization method to maximize the profile likelihood if that is selected. Argument passed to optim. The default method is Nelder-Mead. |
Details
Caution: The profile likelihood optimization may be slow for large datasets.
Value
Estimate |
Estimated m-period return level. |
CI |
Confidence interval for the m-period return level. |
Period |
The period length used. |
ConfLevel |
The confidence level used. |
References
Coles, S. (2001). An introduction to statistical modeling of extreme values (Vol. 208). London: Springer.
Examples
x <- rgpd(5000, loc = 0, scale = 1, shape = -0.1)
# Compute 50-period return level.
z <- gpdFit(x, nextremes = 200)
gpdRl(z, period = 50, method = "delta")
gpdRl(z, period = 50, method = "profile")