gpdImAsym {eva} | R Documentation |
GPD Asymptotic Adjusted Information Matrix (IM) Test
Description
Runs the IM Test using bootstrap estimated covariance matrix. Asymptotically (in sample size) follows the F(3, bootnum - 3) distribution (see reference for details).
Usage
gpdImAsym(data, bootnum, theta = NULL)
Arguments
data |
Data should be in vector form. |
bootnum |
Number of bootstrap replicates for the covariance estimate. |
theta |
Estimate for theta in the vector form (scale, shape). If NULL, uses the MLE. |
Value
statistic |
Test statistic. |
p.value |
P-value for the test. |
theta |
Value of theta used in the test. |
effective_bootnum |
Effective number of bootstrap replicates used for the covariance estimate. If a replicate fails to converge, it will not be used in the estimation. |
References
Dhaene, G., & Hoorelbeke, D. (2004). The information matrix test with bootstrap-based covariance matrix estimation. Economics Letters, 82(3), 341-347.
Examples
# Generate some data from GPD
x <- rgpd(200, loc = 0, scale = 1, shape = 0.2)
gpdImAsym(x, bootnum = 50)
[Package eva version 0.2.6 Index]