get_SE.bc.mean.sd {estmeansd} | R Documentation |
Parametric bootstrap standard error estimation for the box-cox approach
Description
Computes a parametric bootstrap standard error estimate for the box-cox approach.
Usage
## S3 method for class 'bc.mean.sd'
get_SE(x, nboot = 1000, shift.when.negative = TRUE, shift.val = 0.5, ...)
Arguments
x |
object of class "bc.mean.sd". |
nboot |
numeric value giving the number of bootstrap replicates. The default is |
shift.when.negative |
logical scalar indicating whether to add a constant to the generated sample quantiles if the smallest quantile (i.e., the minimum value in scenarios S1 and S3, the first quartile in scenario S2) is negative. When this argument is set to |
shift.val |
numeric value to which the smallest quantile should be shifted to if it is negative (see argument |
... |
other arguments. |
Value
A list with the following components:
est.se |
Estimated standard error of the mean estimator. |
boot.means |
Bootstrap replicates of the mean estimates. |
boot.sds |
Bootstrap replicates of the standard deviation estimates. |
References
McGrath S., Katzenschlager S., Zimmer A.J., Seitel A., Steele R., and Benedetti A. (2023). Standard error estimation in meta-analysis of studies reporting medians. Statistical Methods in Medical Research. 32(2):373-388.
McGrath S., Zhao X., Steele R., Thombs B.D., Benedetti A., and the DEPRESsion Screening Data (DEPRESSD) Collaboration. (2020). Estimating the sample mean and standard deviation from commonly reported quantiles in meta-analysis. Statistical Methods in Medical Research. 29(9):2520-2537.
See Also
Examples
## Generate S2 summary data
set.seed(1)
n <- 250
x <- stats::rlnorm(n, 5, 0.25)
quants <- stats::quantile(x, probs = c(0, 0.5, 1))
## Estimate the mean and its standard error
res <- bc.mean.sd(min.val = quants[1], med.val = quants[2], max.val = quants[3],
n = n)
get_SE(res)$est.se