simLASSO {eshrink} | R Documentation |
Compute Lasso Estimator for simulated Data
Description
Simulates data from a regression model and computes the lasso estimate for this data.
Usage
simLASSO(lambda, X, beta, sigma, penalize, rescale.lambda = TRUE, ind = 1)
Arguments
lambda |
Penalty factor to be applied |
X |
Design matrix of regression problem |
beta |
true value of parameter vector to simulate from |
sigma |
true value of square root of variance parameter for simulating. |
penalize |
Vector giving penalty structure. Supplied to glmnet as ' |
rescale.lambda |
Should lambda be rescaled to account for the default re-scaling done by glmnet? |
ind |
Index of coefficient to be returned. Value of 0 implies all coefficients (i.e. the full parameter vector estimate) |
Details
Simulates data from a regression model with true
coefficient parameter beta
and normal errors with
standard deviation sigma
. Computes the LASSO
estimate for the coefficient vector using the glmnet
function from the package of the same name.
Author(s)
Joshua Keller