| simLASSO {eshrink} | R Documentation |
Compute Lasso Estimator for simulated Data
Description
Simulates data from a regression model and computes the lasso estimate for this data.
Usage
simLASSO(lambda, X, beta, sigma, penalize, rescale.lambda = TRUE, ind = 1)
Arguments
lambda |
Penalty factor to be applied |
X |
Design matrix of regression problem |
beta |
true value of parameter vector to simulate from |
sigma |
true value of square root of variance parameter for simulating. |
penalize |
Vector giving penalty structure. Supplied to glmnet as ' |
rescale.lambda |
Should lambda be rescaled to account for the default re-scaling done by glmnet? |
ind |
Index of coefficient to be returned. Value of 0 implies all coefficients (i.e. the full parameter vector estimate) |
Details
Simulates data from a regression model with true
coefficient parameter beta and normal errors with
standard deviation sigma. Computes the LASSO
estimate for the coefficient vector using the glmnet
function from the package of the same name.
Author(s)
Joshua Keller