model_bedload {eseis} | R Documentation |
Model the seismic spectrum due to bedload transport in rivers
Description
The function calculates a seismic spectrum as predicted by the model of Tsai et al. (2012) for river bedload transport. The code was written to R by Sophie Lagarde and integrated to the R package 'eseis' by Michael Dietze.
Usage
model_bedload(
gsd,
d_s,
s_s,
r_s,
q_s,
h_w,
w_w,
a_w,
f = c(1, 100),
r_0,
f_0,
q_0,
e_0,
v_0,
x_0,
n_0,
n_c,
res = 100,
adjust = TRUE,
eseis = FALSE,
...
)
Arguments
gsd |
|
d_s |
|
s_s |
|
r_s |
|
q_s |
|
h_w |
|
w_w |
|
a_w |
|
f |
|
r_0 |
|
f_0 |
|
q_0 |
|
e_0 |
|
v_0 |
|
x_0 |
|
n_0 |
|
n_c |
|
res |
|
adjust |
|
eseis |
|
... |
Further arguments passed to the function. |
Details
The model uses a set of predefined constants. These can also be changed
by the user, using the ...
argument:
-
g = 9.81
, gravitational acceleration (m/s^2) -
r_w = 1000
, fluid specific density (kg/m^3) -
k_s = 3 * d_50
, roughness length (m) -
log_lim = c(0.0001, 100), limits of grain-size distribution function template (m)
-
log_length = 10000, length of grain-size distribution function template
-
nu = 10^(-6)
, specific density of the fluid (kg/m^3) -
power_d = 3
, grain-size power exponent -
gamma = 0.9
, gamma parameter, after Parker (1990) -
s_c = 0.8
, drag coefficient parameter -
s_p = 3.5
, drag coefficient parameter -
c_1 = 2 / 3
, inter-impact time scaling, after Sklar & Dietrich (2004)
When no user defined grain-size distribution function is provided,the
function calculates the raised cosine distribution function as defined
in Tsai et al. (2012) using the default range and resolution as specified
by log_lim
and log_length
(see additional arguments list
above). These default values are appropriate for mean sediment sizes
between 0.001 and 10 m and log standard deivations between 0.05 and 1.
When more extreme distributions are to be used, it is necessary to either
adjust the arguments log_lim
and log_length
or use a
user defined distribution function.
The adjustment option (implemented with package version 0.6.0) is only
relevant for wide grain-size distributions, i.e., s_s
> 0.2. In
such cases, the unadjusted version tends to underestimate seismic power.
Value
eseis
object containing the modelled spectrum.
Author(s)
Sophie Lagarde, Michael Dietze
References
Tsai, V. C., B. Minchew, M. P. Lamb, and J.-P. Ampuero (2012), A physical model for seismic noise generation from sediment transport in rivers, Geophys. Res. Lett., 39, L02404, doi:10.1029/2011GL050255.
Examples
## calculate spectrum (i.e., fig. 1b in Tsai et al., 2012)
p_bedload <- model_bedload(d_s = 0.7,
s_s = 0.1,
r_s = 2650,
q_s = 0.001,
h_w = 4,
w_w = 50,
a_w = 0.005,
f = c(0.1, 20),
r_0 = 600,
f_0 = 1,
q_0 = 20,
e_0 = 0,
v_0 = 1295,
x_0 = 0.374,
n_0 = 1,
res = 100,
eseis = TRUE)
## plot spectrum
plot_spectrum(data = p_bedload,
ylim = c(-170, -110))
## define empiric grain-size distribution
gsd_empiric <- data.frame(d = c(0.70, 0.82, 0.94, 1.06, 1.18, 1.30),
p = c(0.02, 0.25, 0.45, 0.23, 0.04, 0.00))
## calculate spectrum
p_bedload <- model_bedload(gsd = gsd_empiric,
r_s = 2650,
q_s = 0.001,
h_w = 4,
w_w = 50,
a_w = 0.005,
f = c(0.1, 20),
r_0 = 600,
f_0 = 1,
q_0 = 20,
e_0 = 0,
v_0 = 1295,
x_0 = 0.374,
n_0 = 1,
res = 100,
eseis = TRUE)
## plot spectrum
plot_spectrum(data = p_bedload,
ylim = c(-170, -110))
## define mean and sigma for parametric distribution function
d_50 <- 1
sigma <- 0.1
## define raised cosine distribution function following Tsai et al. (2012)
d_1 <- 10^seq(log10(d_50 - 5 * sigma),
log10(d_50 + 5 * sigma),
length.out = 20)
sigma_star <- sigma / sqrt(1 / 3 - 2 / pi^2)
p_1 <- (1 / (2 * sigma_star) *
(1 + cos(pi * (log(d_1) - log(d_50)) / sigma_star))) / d_1
p_1[log(d_1) - log(d_50) > sigma_star] <- 0
p_1[log(d_1) - log(d_50) < -sigma_star] <- 0
p_1 <- p_1 / sum(p_1)
gsd_raised_cos <- data.frame(d = d_1,
p = p_1)