plot_mdiff {esci}R Documentation

Plots for comparing continuous outcome variables between conditions

Description

plot_mdiff helps visualize comparisons of a continuous outcome variable between conditions. It can plot raw data (if available) for each condition, the mean or median (raw data only) for each condition, and it emphasizes a 1-df comparison among conditions, plotting the estimated difference and its confidence interval with a difference axis. You can pass esci-estimate objects generated by estimate_mdiff_one(), estimate_mdiff_two(), estimate_mdiff_paired(), estimate_mdiff_ind_contrast(), estimate_mdiff_2x2_between(), and estimate_mdiff_2x2_mixed(). This function returns a ggplot2 object.

Usage

plot_mdiff(
  estimate,
  effect_size = c("mean", "median"),
  data_layout = c("random", "swarm", "none"),
  data_spread = 0.15,
  error_layout = c("halfeye", "eye", "gradient", "none"),
  error_scale = 0.3,
  error_nudge = 0.4,
  error_normalize = c("groups", "all", "panels"),
  difference_axis_units = c("raw", "sd"),
  difference_axis_breaks = 5,
  difference_axis_space = 1,
  simple_contrast_labels = TRUE,
  ylim = c(NA, NA),
  ybreaks = 5,
  rope = c(NA, NA),
  rope_units = c("raw", "sd"),
  ggtheme = NULL
)

Arguments

estimate

An esci-estimate object generated by an estimate_mdiff_ function

effect_size

Optional; one of 'mean' or 'median' to determine the measure of central tendency plotted. Note that median is only available if the estimate was generated from raw data. Defaults to 'mean'

data_layout

Optional; one of 'random', 'swarm', or 'none' to determine how raw data (if available) will be displayed. Defaults to 'random'

data_spread

Optional numeric determining width raw data will use in each condition. Defaults to 0.15 (relative to 1 unit per condition)

error_layout

Optional; one of 'halfeye', 'eye', 'gradient' or 'none' to determine how expected error distribution will be displayed for each estimated parameter. Defaults to 'halfeye'. Currently does not apply if 'median' is selected as effect size, in which case a simple error bar will be used

error_scale

Optional numeric determining width of the expected error distribution. Defaults to 0.3

error_nudge

Optional numeric determining degree to which measures of central tendency will be shifted to the right of the raw data; defaults to 0.4

error_normalize

Optional; one of 'groups', 'all', or 'panels' to determine how width of the expected error distributions will be normalized. Defaults to 'groups'. See documentation in ggdist

difference_axis_units

Optional; one of 'raw' or 'sd' to determine if markings on the difference axis will be in raw-score units or in standard-deviation units. For 'sd' the standard deviation of the mean difference is used, and this is true even if 'median' is selected as the effect size

difference_axis_breaks

Optional numeric > 1 of suggested number of breaks for the difference axis. Defaults to 5

difference_axis_space

Optional numeric > 0 to indicate spacing to the difference axis. Defaults to 1

simple_contrast_labels

Optional logical to determine if contrasts are given simple labels ('Reference', 'Comparison', 'Difference') or more descriptive labels based on the contrast specified.

ylim

Optional 2-item vector specifying y-axis limits. Defaults to c(NA NA); Use NA to specify auto-limit.

ybreaks

Optional numeric > 2 for suggested number of y-axis breaks; defaults to 5

rope

Optional 2-item vector with item 2 >= item 1. Use to specify a range of values to use to visualize a hypothesis test. If both values are the same, a point-null hypothesis test will be visualized. If item2 > item1 an interval-null hypothesis test will be visualized. Defaults to c(NA, NA), which is to not visualize a hypothesis test

rope_units

Optional; one of 'raw' or 'sd' to indicate units of the rope passed. Defaults to 'raw'

ggtheme

Optional ggplot2 theme object to specify the visual style of the plot. Defaults to ggplot2::theme_classic()

Details

This function was developed primarily for student use within jamovi when learning along with the text book Introduction to the New Statistics, 2nd edition (Cumming & Calin-Jageman, 2024).

Expect breaking changes as this function is improved for general use. Work still do be done includes:

Value

Returns a ggplot object

Examples

# From raw data
data("data_penlaptop1")

estimate_from_raw <- esci::estimate_mdiff_two(
  data = data_penlaptop1,
  outcome_variable = transcription,
  grouping_variable = condition,
  switch_comparison_order = TRUE,
  assume_equal_variance = TRUE
)

# To visualize the estimated median difference (raw data only)
myplot_from_raw <- esci::plot_mdiff(
  estimate_from_raw,
  effect_size = "median"
)

# To conduct a hypothesis test
res_htest_from_raw <- esci::test_mdiff(
  estimate_from_raw,
  effect_size = "median",
  rope = c(-2, 2)
)


# From summary data
estimate_from_summary <- esci::estimate_mdiff_two(
  comparison_mean = 12.09,
  comparison_sd = 5.52,
  comparison_n = 103,
  reference_mean = 6.88,
  reference_sd = 4.22,
  reference_n = 48,
  grouping_variable_levels = c("Ref-Laptop", "Comp-Pen"),
  outcome_variable_name = "% Transcription",
  grouping_variable_name = "Note-taking type",
  assume_equal_variance = TRUE
)

# To visualize the estimated mean difference
myplot <- esci::plot_mdiff(
  estimate_from_summary,
  effect_size = "mean"
)

# To conduct a hypothesis test
res_htest_from_summary <- esci::test_mdiff(
  estimate_from_summary,
  effect_size = "mean",
  rope = c(-2, 2)
)


[Package esci version 1.0.3 Index]