plot_mdiff {esci} | R Documentation |
Plots for comparing continuous outcome variables between conditions
Description
plot_mdiff
helps visualize comparisons of a continuous outcome
variable between conditions. It can plot raw data (if available) for each
condition, the mean or median (raw data only) for each condition, and
it emphasizes a 1-df comparison among conditions, plotting the estimated
difference and its confidence interval with a difference axis.
You can pass esci-estimate objects generated
by estimate_mdiff_one()
, estimate_mdiff_two()
,
estimate_mdiff_paired()
, estimate_mdiff_ind_contrast()
,
estimate_mdiff_2x2_between()
, and estimate_mdiff_2x2_mixed()
.
This function returns a ggplot2 object.
Usage
plot_mdiff(
estimate,
effect_size = c("mean", "median"),
data_layout = c("random", "swarm", "none"),
data_spread = 0.15,
error_layout = c("halfeye", "eye", "gradient", "none"),
error_scale = 0.3,
error_nudge = 0.4,
error_normalize = c("groups", "all", "panels"),
difference_axis_units = c("raw", "sd"),
difference_axis_breaks = 5,
difference_axis_space = 1,
simple_contrast_labels = TRUE,
ylim = c(NA, NA),
ybreaks = 5,
rope = c(NA, NA),
rope_units = c("raw", "sd"),
ggtheme = NULL
)
Arguments
estimate |
An esci-estimate object generated by an estimate_mdiff_ function |
effect_size |
Optional; one of 'mean' or 'median' to determine the measure of central tendency plotted. Note that median is only available if the estimate was generated from raw data. Defaults to 'mean' |
data_layout |
Optional; one of 'random', 'swarm', or 'none' to determine how raw data (if available) will be displayed. Defaults to 'random' |
data_spread |
Optional numeric determining width raw data will use in each condition. Defaults to 0.15 (relative to 1 unit per condition) |
error_layout |
Optional; one of 'halfeye', 'eye', 'gradient' or 'none' to determine how expected error distribution will be displayed for each estimated parameter. Defaults to 'halfeye'. Currently does not apply if 'median' is selected as effect size, in which case a simple error bar will be used |
error_scale |
Optional numeric determining width of the expected error distribution. Defaults to 0.3 |
error_nudge |
Optional numeric determining degree to which measures of central tendency will be shifted to the right of the raw data; defaults to 0.4 |
error_normalize |
Optional; one of 'groups', 'all', or 'panels' to determine how width of the expected error distributions will be normalized. Defaults to 'groups'. See documentation in ggdist |
difference_axis_units |
Optional; one of 'raw' or 'sd' to determine if markings on the difference axis will be in raw-score units or in standard-deviation units. For 'sd' the standard deviation of the mean difference is used, and this is true even if 'median' is selected as the effect size |
difference_axis_breaks |
Optional numeric > 1 of suggested number of breaks for the difference axis. Defaults to 5 |
difference_axis_space |
Optional numeric > 0 to indicate spacing to the difference axis. Defaults to 1 |
simple_contrast_labels |
Optional logical to determine if contrasts are given simple labels ('Reference', 'Comparison', 'Difference') or more descriptive labels based on the contrast specified. |
ylim |
Optional 2-item vector specifying y-axis limits. Defaults to c(NA NA); Use NA to specify auto-limit. |
ybreaks |
Optional numeric > 2 for suggested number of y-axis breaks; defaults to 5 |
rope |
Optional 2-item vector with item 2 >= item 1. Use to specify a range of values to use to visualize a hypothesis test. If both values are the same, a point-null hypothesis test will be visualized. If item2 > item1 an interval-null hypothesis test will be visualized. Defaults to c(NA, NA), which is to not visualize a hypothesis test |
rope_units |
Optional; one of 'raw' or 'sd' to indicate units of the rope passed. Defaults to 'raw' |
ggtheme |
Optional ggplot2 theme object to specify the visual style of the
plot. Defaults to |
Details
This function was developed primarily for student use within jamovi when learning along with the text book Introduction to the New Statistics, 2nd edition (Cumming & Calin-Jageman, 2024).
Expect breaking changes as this function is improved for general use. Work still do be done includes:
Revise to avoid deprecated ggplot features
Revise for consistent ability to control aesthetics and consistent layer names
Value
Returns a ggplot object
Examples
# From raw data
data("data_penlaptop1")
estimate_from_raw <- esci::estimate_mdiff_two(
data = data_penlaptop1,
outcome_variable = transcription,
grouping_variable = condition,
switch_comparison_order = TRUE,
assume_equal_variance = TRUE
)
# To visualize the estimated median difference (raw data only)
myplot_from_raw <- esci::plot_mdiff(
estimate_from_raw,
effect_size = "median"
)
# To conduct a hypothesis test
res_htest_from_raw <- esci::test_mdiff(
estimate_from_raw,
effect_size = "median",
rope = c(-2, 2)
)
# From summary data
estimate_from_summary <- esci::estimate_mdiff_two(
comparison_mean = 12.09,
comparison_sd = 5.52,
comparison_n = 103,
reference_mean = 6.88,
reference_sd = 4.22,
reference_n = 48,
grouping_variable_levels = c("Ref-Laptop", "Comp-Pen"),
outcome_variable_name = "% Transcription",
grouping_variable_name = "Note-taking type",
assume_equal_variance = TRUE
)
# To visualize the estimated mean difference
myplot <- esci::plot_mdiff(
estimate_from_summary,
effect_size = "mean"
)
# To conduct a hypothesis test
res_htest_from_summary <- esci::test_mdiff(
estimate_from_summary,
effect_size = "mean",
rope = c(-2, 2)
)