estimate_r {esci} | R Documentation |
Estimates the linear correlation (Pearson's r) between two continuous variables
Description
estimate_r
is suitable for a design with two continuous
variables. It estimates the linear correlation between two variables
(Pearson's r) with a confidence interval. You can pass raw data or
summary data.
Usage
estimate_r(
data = NULL,
x = NULL,
y = NULL,
r = NULL,
n = NULL,
x_variable_name = "My x variable",
y_variable_name = "My y variable",
conf_level = 0.95,
save_raw_data = TRUE
)
Arguments
data |
For raw data - A data frame or tibble |
x |
For raw data - The column name of the outcome variable, or a vector of numeric data |
y |
For raw data - The column name of the outcome variable, or a vector of numeric data |
r |
For summary data - A pearson's r correlation coefficient |
n |
For summary data - Sample size, an integer > 0 |
x_variable_name |
Optional friendly name for the x variable. Defaults to 'My x variable' or the outcome variable column name if a data frame is passed. |
y_variable_name |
Optional friendly name for the y variable. Defaults to 'My y variable' or the outcome variable column name if a data frame is passed. |
conf_level |
The confidence level for the confidence interval. Given in decimal form. Defaults to 0.95. |
save_raw_data |
For raw data; defaults to TRUE; set to FALSE to save memory by not returning raw data in estimate object |
Details
Reach for this function to conduct simple linear correlation or simple linear regression.
Once you generate an estimate with this function, you can visualize
it with plot_correlation()
and you can test hypotheses with
test_correlation()
. In addition, you can use plot_scatter()
to visualize the raw data and to conduct a regression analysis that r
returns predicted Y' values from a given X value.
The estimated correlation is from statpsych::ci.cor()
, which uses the
Fisher r-to-z approach.
Value
Returns object of class esci_estimate
-
overview
-
outcome_variable_name -
-
mean -
-
mean_LL -
-
mean_UL -
-
median -
-
median_LL -
-
median_UL -
-
sd -
-
min -
-
max -
-
q1 -
-
q3 -
-
n -
-
missing -
-
df -
-
mean_SE -
-
median_SE -
-
-
es_r
-
x_variable_name -
-
y_variable_name -
-
effect -
-
effect_size -
-
LL -
-
UL -
-
SE -
-
n -
-
df -
-
ta_LL -
-
ta_UL -
-
-
regression
-
component -
-
values -
-
LL -
-
UL -
-
-
raw_data
-
x -
-
y -
-
fit -
-
lwr -
-
upr -
-
Examples
# From raw data
data("data_thomason_1")
estimate_from_raw <- esci::estimate_r(
esci::data_thomason_1,
Pretest,
Posttest
)
# To visualize the value of r
myplot_correlation <- esci::plot_correlation(estimate_from_raw)
# To visualize the data (scatterplot) and use regression to obtain Y' from X
myplot_scatter_from_raw <- esci::plot_scatter(estimate_from_raw, predict_from_x = 10)
# To evaluate a hypothesis (interval null from -0.1 to 0.1):
res_htest_from_raw <- esci::test_correlation(
estimate_from_raw,
rope = c(-0.1, 0.1)
)
# From summary data
estimate_from_summary <- esci::estimate_r(r = 0.536, n = 50)
# To visualize the value of r
myplot_correlation_from_summary <- esci::plot_correlation(estimate_from_summary)
# To evaluate a hypothesis (interval null from -0.1 to 0.1):
res_htest_from_summary <- esci::test_correlation(
estimate_from_summary,
rope = c(-0.1, 0.1)
)