estimate_proportion {esci} | R Documentation |
Estimates for a categorical variable with no grouping (single-group design)
Description
estimate_proportion
is suitable for a single group design with a
categorical outcome variable. It estimates the population proportion
for the frequency of each level of the outcome variable, with confidence
intervals. You can pass raw data or summary data.
Usage
estimate_proportion(
data = NULL,
outcome_variable = NULL,
cases = NULL,
case_label = 1,
outcome_variable_levels = NULL,
outcome_variable_name = "My outcome variable",
conf_level = 0.95,
count_NA = FALSE
)
Arguments
data |
For raw data - a data frame or tibble |
outcome_variable |
For raw data - The column name of the outcome variable, which must be a factor, or a vector that is a factor |
cases |
For summary data - A vector of cases |
case_label |
A numeric or string indicating which level of the factor to estimate. Defaults to 1, meaning first level is analyzed |
outcome_variable_levels |
For summary data - optional vector of 2 characters indicating name of the count level and name of the not count level. Defaults to "Affected" and "Not Affected" |
outcome_variable_name |
Optional friendly name for the outcome variable. Defaults to 'My outcome variable' or the outcome variable column name if a data frame is passed. |
conf_level |
The confidence level for the confidence interval. Given in decimal form. Defaults to 0.95. |
count_NA |
Logical to count NAs (TRUE) in total N or not (FALSE) |
Details
Once you generate an estimate with this function, you can visualize
it with plot_proportion()
.
If you want to compare your estimate to a known value or reference, then
use estimate_pdiff_one()
.
The estimated proportions are from statpsych::ci.prop1()
(renamed
ci.prop as of statpsych 1.6).
Value
Returns an object of class esci_estimate
-
overview
-
outcome_variable_name -
-
outcome_variable_level -
-
cases -
-
n -
-
P -
-
P_LL -
-
P_UL -
-
P_SE -
-
P_adjusted -
-
ta_LL -
-
ta_UL -
-
-
es_proportion
-
outcome_variable_name -
-
case_label -
-
effect -
-
effect_size -
-
LL -
-
UL -
-
SE -
-
effect_size_adjusted -
-
ta_LL -
-
ta_UL -
-
cases -
-
n -
-
Examples
# From raw data
data("data_campus_involvement")
estimate_from_raw <- esci::estimate_proportion(
esci::data_campus_involvement,
CommuterStatus
)
# To visualize the estimate
myplot_from_raw <- esci::plot_proportion(estimate_from_raw)
# From summary data
estimate_from_summary <- esci::estimate_proportion(
cases = c(8, 22-8),
outcome_variable_levels = c("Affected", "Not Affected")
)
# To visualize the estimate
myplot_from_summary<- esci::plot_proportion(estimate_from_summary)