estimate_mdiff_one {esci} | R Documentation |
Estimates for a single-group design with a continuous outcome variable compared to a reference or population value
Description
Returns object
estimate_mdiff_one
is suitable for a single-group design
with a continuous outcome variable that is compared to a reference
or population value. It can express estimates as mean differences,
standardized mean differences (Cohen's d) or median differences
(raw data only). You can pass raw data or summary data.
Usage
estimate_mdiff_one(
data = NULL,
outcome_variable = NULL,
comparison_mean = NULL,
comparison_sd = NULL,
comparison_n = NULL,
reference_mean = 0,
outcome_variable_name = "My outcome variable",
conf_level = 0.95,
save_raw_data = TRUE
)
Arguments
data |
For raw data - a data frame or tibble |
outcome_variable |
For raw data - The column name of the outcome variable, or a vector of numeric data |
comparison_mean |
For summary data, a numeric |
comparison_sd |
For summary data, numeric > 0 |
comparison_n |
For summary data, a numeric integer > 0 |
reference_mean |
Reference value, defaults to 0 |
outcome_variable_name |
Optional friendly name for the outcome variable. Defaults to 'My outcome variable' or the outcome variable column name if a data frame is passed. |
conf_level |
The confidence level for the confidence interval. Given in decimal form. Defaults to 0.95. |
save_raw_data |
For raw data; defaults to TRUE; set to FALSE to save memory by not returning raw data in estimate object |
Details
Reach for this function in place of a z-test or one-sample t-test.
Once you generate an estimate with this function, you can visualize
it with plot_mdiff()
and you can test hypotheses with
test_mdiff()
.
The estimated mean differences are from statpsych::ci.mean1()
(renamed
ci.mean as of statpsych 1.6).
The estimated SMDs are from CI_smd_one()
.
The estimated median differences are from statpsych::ci.median1()
(renamed
ci.median as of statpsych 1.6)
Value
Returns object of class esci_estimate
-
overview
-
outcome_variable_name -
-
mean -
-
mean_LL -
-
mean_UL -
-
median -
-
median_LL -
-
median_UL -
-
sd -
-
min -
-
max -
-
q1 -
-
q3 -
-
n -
-
missing -
-
df -
-
mean_SE -
-
median_SE -
-
-
es_mean
-
outcome_variable_name -
-
effect -
-
effect_size -
-
LL -
-
UL -
-
SE -
-
df -
-
ta_LL -
-
ta_UL -
-
-
es_median
-
outcome_variable_name -
-
effect -
-
effect_size -
-
LL -
-
UL -
-
SE -
-
df -
-
ta_LL -
-
ta_UL -
-
-
raw_data
-
grouping_variable -
-
outcome_variable -
-
-
es_mean_difference
-
outcome_variable_name -
-
effect -
-
effect_size -
-
LL -
-
UL -
-
SE -
-
df -
-
ta_LL -
-
ta_UL -
-
type -
-
-
es_median_difference
-
outcome_variable_name -
-
effect -
-
effect_size -
-
LL -
-
UL -
-
SE -
-
df -
-
ta_LL -
-
ta_UL -
-
type -
-
-
es_smd
-
outcome_variable_name -
-
effect -
-
effect_size -
-
LL -
-
UL -
-
numerator -
-
denominator -
-
SE -
-
df -
-
d_biased -
-
Examples
# From raw data
data("data_penlaptop1")
estimate_from_raw <- esci::estimate_mdiff_one(
data = data_penlaptop1[data_penlaptop1$condition == "Pen", ],
outcome_variable = transcription,
reference_mean = 10
)
# To visualize the mean difference estimate
myplot_from_raw <- esci::plot_mdiff(estimate_from_raw, effect_size = "mean")
# To conduct a hypothesis test
res_htest_from_raw <- esci::test_mdiff(
estimate_from_raw,
effect_size = "mean",
rope = c(-2, 2)
)
# From summary data
mymean <- 12.09
mysd <- 5.52
myn <- 103
estimate_from_summary <- esci::estimate_mdiff_one(
comparison_mean = mymean,
comparison_sd = mysd,
comparison_n = myn,
reference_mean = 12
)
# To visualize the estimate
myplot_from_sumary <- esci::plot_mdiff(
estimate_from_summary,
effect_size = "mean"
)
# To conduct a hypothesis test
res_htest_from_summary <- esci::test_mdiff(
estimate_from_summary,
effect_size = "mean",
rope = c(-2, 2)
)