estimate_mdiff_2x2_mixed {esci} | R Documentation |
Estimates for a 2x2 mixed factorial design with a continuous outcome variable
Description
Returns object
estimate_mdiff_2x2_mixed
is suitable for a 2x2 mixed-factorial design
with a continuous outcome variable. It estimates each main effect, the
simple effects for the repeated-measures factor, and the interaction.
It can express these estimates as mean differences.
This function accepts raw data only. Standardized mean differences are not
(yet) available; stay tuned. Median differences are also not yet available.
Usage
estimate_mdiff_2x2_mixed(
data,
outcome_variable_level1,
outcome_variable_level2,
grouping_variable,
outcome_variable_name = "My outcome variable",
repeated_measures_name = "Time",
conf_level = 0.95,
save_raw_data = TRUE
)
Arguments
data |
For raw data - a dataframe or tibble |
outcome_variable_level1 |
The column name of the outcome variable for level 1 of the repeated-measures factor |
outcome_variable_level2 |
The column name of the outcome variable for level 2 of the repeated-measures factor |
grouping_variable |
The column name of the grouping variable; only 2 levels allowed; must be a factor |
outcome_variable_name |
Optional friendly name for the outcome variable. Defaults to 'My outcome variable' or the outcome variable column name if a data frame is passed. |
repeated_measures_name |
Optional friendly name for the repeated measures factor. Defaults to 'Time' |
conf_level |
The confidence level for the confidence interval. Given in decimal form. Defaults to 0.95. |
save_raw_data |
For raw data; defaults to TRUE; set to FALSE to save memory by not returning raw data in estimate object |
Details
Reach for this function in place of a 2x2 mixed-factorial ANOVA.
Once you generate an estimate with this function, you can visualize
it with plot_mdiff()
and you can visualize the interaction
specifically with plot_interaction()
. You can test hypotheses
with test_mdiff()
.
The estimated mean differences are from statpsych::ci.2x2.mean.mixed()
.
Value
Returns object of class esci_estimate
-
es_mean_difference
-
type -
-
outcome_variable_name -
-
grouping_variable_name -
-
effect -
-
effect_size -
-
LL -
-
UL -
-
SE -
-
df -
-
ta_LL -
-
ta_UL -
-
effect_type -
-
effects_complex -
-
t -
-
p -
-
-
es_smd
-
outcome_variable_name -
-
grouping_variable_name -
-
effect -
-
effect_size -
-
LL -
-
UL -
-
numerator -
-
denominator -
-
SE -
-
df -
-
d_biased -
-
effect_type -
-
effects_complex -
-
-
overview
-
outcome_variable_name -
-
grouping_variable_name -
-
grouping_variable_level -
-
mean -
-
mean_LL -
-
mean_UL -
-
median -
-
median_LL -
-
median_UL -
-
sd -
-
min -
-
max -
-
q1 -
-
q3 -
-
n -
-
missing -
-
df -
-
mean_SE -
-
median_SE -
-
-
raw_data
-
grouping_variable -
-
outcome_variable -
-
grouping_variable_A -
-
grouping_variable_B -
-
paired -
-
Examples
# From raw data (summary data mode not available for this function)
example_data <- data.frame(
pretest = c(
19, 18, 19, 20, 17, 16, 16, 10, 12, 9, 13, 15
),
posttest = c(
18, 19, 20, 17, 20, 16, 19, 16, 16, 14, 16, 18
),
condition = as.factor(
c(
rep("Control", times = 6),
rep("Treated", times = 6)
)
)
)
estimates <- esci::estimate_mdiff_2x2_mixed(
data = example_data,
outcome_variable_level1 = pretest,
outcome_variable_level2 = posttest,
grouping_variable = condition,
repeated_measures_name = "Time"
)
# To visualize the estimated mean difference for the interaction
myplot <- esci::plot_mdiff(estimates$interaction, effect_size = "mean")
# Line-plot of the interaction with fan effect representing each simple-effect CI
plot_interaction_line_CI <- esci::plot_interaction(
estimates,
show_CI = TRUE
)
# To conduct a hypothesis test
res_htest_from_raw <- esci::test_mdiff(
estimates$interaction,
effect_size = "mean"
)