| esc_rpb {esc} | R Documentation | 
Compute effect size from Point-Biserial Correlation
Description
Compute effect size from Point-Biserial Correlation.
Usage
esc_rpb(
  r,
  p,
  totaln,
  grp1n,
  grp2n,
  es.type = c("d", "g", "or", "logit", "f", "eta", "cox.or", "cox.log"),
  study = NULL
)
Arguments
| r | The point-biserial r-value. One of  | 
| p | The p-value of the point-biserial correlation. One of  | 
| totaln | Total sample size. Either  | 
| grp1n | Treatment group sample size. | 
| grp2n | Control group sample size. | 
| es.type | Type of effect size that should be returned. 
 | 
| study | Optional string with the study name. Using  | 
Value
The effect size es, the standard error se, the variance
of the effect size var, the lower and upper confidence limits
ci.lo and ci.hi, the weight factor w and the
total sample size totaln.
References
Lipsey MW, Wilson DB. 2001. Practical meta-analysis. Thousand Oaks, Calif: Sage Publications
 
Wilson DB. 2016. Formulas Used by the "Practical Meta-Analysis Effect Size Calculator". Unpublished manuscript: George Mason University
Examples
# unequal sample size
esc_rpb(r = .3, grp1n = 100, grp2n = 150)
# equal sample size
esc_rpb(r = .3, totaln = 200)
# unequal sample size, with p-value
esc_rpb(p = 0.03, grp1n = 100, grp2n = 150)
# equal sample size, with p-value
esc_rpb(p = 0.03, totaln = 200)