summary.ergm {ergm} | R Documentation |
Summarizing ERGM Model Fits
Description
base::summary()
method for ergm()
fits.
Usage
## S3 method for class 'ergm'
summary(
object,
...,
correlation = FALSE,
covariance = FALSE,
total.variation = TRUE
)
## S3 method for class 'summary.ergm'
print(
x,
digits = max(3, getOption("digits") - 3),
correlation = x$correlation,
covariance = x$covariance,
signif.stars = getOption("show.signif.stars"),
eps.Pvalue = 1e-04,
print.formula = FALSE,
print.fitinfo = TRUE,
print.coefmat = TRUE,
print.message = TRUE,
print.deviances = TRUE,
print.drop = TRUE,
print.offset = TRUE,
print.call = TRUE,
...
)
Arguments
object |
an object of class |
... |
For |
correlation |
logical; if |
covariance |
logical; if |
total.variation |
logical; if |
x |
object of class |
digits |
significant digits for coefficients |
signif.stars |
whether to print dots and stars to signify
statistical significance. See |
eps.Pvalue |
|
print.formula , print.fitinfo , print.coefmat , print.message , print.deviances , print.drop , print.offset , print.call |
which components of the fit summary to print. |
Details
summary.ergm()
tries to be smart about formatting the
coefficients, standard errors, etc.
The default printout of the summary object contains the call, number of iterations used, null and residual deviances, and the values of AIC and BIC (and their MCMC standard errors, if applicable). The coefficient table contains the following columns:
-
Estimate
,Std. Error
- parameter estimates and their standard errors -
MCMC %
- iftotal.variation=TRUE
(default) the percentage of standard error attributable to MCMC estimation process rounded to an integer. See alsovcov.ergm()
and itssources
argument. -
z value
,Pr(>|z|)
- z-test and p-values
Value
The returned object is a list of class "ergm.summary" with the following elements:
formula |
ERGM model formula |
call |
R call used to fit the model |
correlation , covariance |
whether to print correlation/covariance matrices of the estimated parameters |
pseudolikelihood |
was the model estimated with MPLE |
independence |
is the model dyad-independent |
control |
the |
samplesize |
MCMC sample size |
message |
optional message on the validity of the standard error estimates |
null.lik.0 |
It is |
devtext , devtable |
Deviance type and table |
aic , bic |
values of AIC and BIC |
coefficients |
matrices with model parameters and associated statistics |
asycov |
asymptotic covariance matrix |
asyse |
asymptotic standard error matrix |
offset , drop , estimate , iterations , mle.lik , null.lik |
see documentation of the object returned by |
See Also
The model fitting function ergm()
, print.ergm()
, and
base::summary()
. Function stats::coef()
will extract the matrix of
coefficients with standard errors, t-statistics and p-values.
Examples
data(florentine)
x <- ergm(flomarriage ~ density)
summary(x)