erfe {erfe} | R Documentation |
Dexpectilize a vector according the a single asymmetric point
Description
This function is the main fucntion of the erfe package.
It estimates the
ERFE model for a panel dataset and for a sequence of asymmetric point
\tau \in (0, 1)
. When \tau=0.5
the function estimate the
classical within-transformation estimator and its sandwich covariance
matrix.
Usage
erfe(predictors, response, asymp = c(0.25, 0.5, 0.75), id)
Arguments
predictors |
Numeric matrix of covariates/regressors. |
response |
Numeric vector of response variable. |
asymp |
Sequence of asymmetric points. |
id |
Ordered vector of subject ids. |
Value
Returns a list of list according to the asymmetric points. Each list has objects related to the erfe model such as the asymmetric point, the coefficient-estimate, the standard deviation, the estimated covariance.
Author(s)
Amadou Barry, barryhafia@gmail.com
References
Barry, Amadou, Oualkacha, Karim, and Charpentier Arthur. (2022). Weighted asymmetric least squares regression with fixed-effects. arXiv preprint arXiv:2108.04737
Examples
set.seed(13)
temps_obs <- 5
n_subj <- 50
sig <- diag(rep(1,temps_obs))
id <- rep(1:n_subj, each=temps_obs)
rvec <- c(mvtnorm::rmvnorm(n_subj, sigma = sig))
fvec <- (1 + rep(rnorm(n_subj) , each=temps_obs))
predictors <- cbind(rt(n_subj * temps_obs, df=2, ncp=1.3),
1.2 * fvec + rnorm(n_subj * temps_obs, mean = 0.85, sd = 1.5) )
response <- 0.6 * predictors[, 1] + predictors[, 2] + fvec + rvec
asymp <- c(0.25,0.5,0.75)
erfe(predictors, response, asymp=c(0.25,0.5,0.75), id)