relative.influence {erboost} | R Documentation |
Methods for estimating relative influence
Description
Helper functions for computing the relative influence of each variable in the erboost object.
Usage
relative.influence(object, n.trees)
permutation.test.erboost(object, n.trees)
erboost.loss(y,f,w,offset,dist,baseline)
Arguments
object |
a |
n.trees |
the number of trees to use for computations. |
y , f , w , offset , dist , baseline |
For |
Details
This is not intended for end-user use. These functions offer the different
methods for computing the relative influence in summary.erboost
.
erboost.loss
is a helper function for permutation.test.erboost
.
Value
Returns an unprocessed vector of estimated relative influences.
Author(s)
Yi Yang yiyang@umn.edu and Hui Zou hzou@stat.umn.edu
References
Yang, Y. and Zou, H. (2015), “Nonparametric Multiple Expectile Regression via ER-Boost,” Journal of Statistical Computation and Simulation, 84(1), 84-95.
G. Ridgeway (1999). “The state of boosting,” Computing Science and Statistics 31:172-181.
https://cran.r-project.org/package=gbm
J.H. Friedman (2001). "Greedy Function Approximation: A Gradient Boosting Machine," Annals of Statistics 29(5):1189-1232.