pconnorm {epsiwal} | R Documentation |
pconnorm .
Description
CDF of the conditional normal variate.
Usage
pconnorm(y, A, b, eta, mu = NULL, Sigma = NULL, Sigma_eta = Sigma
%*% eta, eta_mu = as.numeric(t(eta) %*% mu), lower.tail = TRUE,
log.p = FALSE)
Arguments
y |
an |
A |
an |
b |
a |
eta |
an |
mu |
an |
Sigma |
an |
Sigma_eta |
an |
eta_mu |
the scalar |
lower.tail |
logical; if TRUE (default), probabilities are
|
log.p |
logical; if TRUE, probabilities p are given as log(p). |
Details
Computes the CDF of the truncated normal conditional on linear constraints, as described in section 5 of Lee et al.
Let y
be multivariate normal with mean \mu
and covariance \Sigma
. Conditional on Ay \le b
for conformable matrix A
and vector b
we compute the
CDF of a truncated normal maximally aligned with \eta
.
Inference depends on the population parameters only via
\eta^{\top}\mu
and \Sigma \eta
,
and only these need to be given.
The test statistic is aligned with y
, meaning that an output
p-value near one casts doubt on the null hypothesis that
\eta^{\top}\mu
is less than the posited value.
Value
The CDF.
Note
An error will be thrown if we do not observe A y \le b
.
Author(s)
Steven E. Pav shabbychef@gmail.com
References
Lee, J. D., Sun, D. L., Sun, Y. and Taylor, J. E. "Exact post-selection inference, with application to the Lasso." Ann. Statist. 44, no. 3 (2016): 907-927. doi:10.1214/15-AOS1371. https://arxiv.org/abs/1311.6238
See Also
the confidence interval function, ci_connorm
.