IVProbitRob {epmrob} | R Documentation |
Robust Probit Model with Endogeneity
Description
Compute robust two-stage estimates of probit model with endogeneity.
Usage
IVProbitRob(reduced, outcome, data, control = rob.control())
Arguments
reduced |
formula, the reduced function. |
outcome |
formula, the outcome function. |
data |
an optional data fram containing the varaibles in the model. If not found in data, the variables are taken from |
control |
a list of parameters for controlling the fitting process. |
Details
Compute robust two-step estimates of the endogenous probit model.
Value
Object of class "epmrob".
Author(s)
Mikhail Zhelonkin, Andre Bik, Andrea Naghi
References
Naghi, A. A., Varadi, M., & Zhelonkin, M. (2022). Robust Estimation of Probit Models with Endogeneity. Econometrics and Statistics. doi:10.1016/j.ecosta.2022.05.001
See Also
Examples
library(mvtnorm)
N <- 2000
M <- 500
cont.frac = 0.01
rho = 0.5
sigma = matrix(c(1, rho, rho, 1), 2, 2)
gamma1 = 1
gamma2 = c(0.6, 0.4)
alpha1 = c(0.5)
beta1 = 0.5
set.seed(123)
X1 = rnorm(N,0,1)
X2 = rnorm(N,0,1)
X3 = rnorm(N,0,1)
eps = rmvnorm(N, mean =rep(0,2), sigma = sigma)
Y1 = X1*gamma1 + X2*gamma2[1] + X3*gamma2[2] + eps[,1]
Y2 = ifelse(X1*beta1 + Y1*alpha1 + eps[,2] > 0, 1, 0)
dat.exmpl <- data.frame(Y2, Y1, X1, X2, X3)
names(dat.exmpl) <- c("int", "endo", "exo", "ivrbl", "ivrbl2")
ivp.fit <- IVProbitRob(endo ~ exo + ivrbl + ivrbl2, int ~ endo + exo, data = dat.exmpl,
control = rob.control(weights.x1 = "hat", weights.x2 = "hat"))
ivp.fit
[Package epmrob version 0.1 Index]