pois.conf.int {epitools} | R Documentation |
Confidence intervals for Poisson counts or rates
Description
Calculates confidence intervals for Poisson counts or rates
Usage
pois.exact(x, pt = 1, conf.level = 0.95)
pois.daly(x, pt = 1, conf.level = 0.95)
pois.byar(x, pt = 1, conf.level = 0.95)
pois.approx(x, pt = 1, conf.level = 0.95)
Arguments
x |
count or vector of counts |
pt |
person-time at risk (default = 1) or vector of person-times |
conf.level |
confidence level (default = 0.95) |
Details
These functions calculate confidence intervals for a Poisson count or
rate using an exact method (pois.exact
), gamma distribution
(pois.daly
), Byar's formula (pois.byar
), or normal
approximation to the Poisson distribution (pois.approx
).
To calculate an exact confidence interval for a crude rate (count
divided by person-time at risk), set pt
equal to the
person-time at risk. Both x
and pt
can be either a
number or a vector of numbers.
The pois.daly
function gives essentially identical answers to
the pois.exact
function except when x = 0. When x = 0, for the
upper confidence limit pois.exact
returns 3.689 and
pois.daly
returns 2.996.
Value
This function returns a n x 6 matrix with the following colnames:
x |
Poisson count |
pt |
person-time at risk |
rate |
crude rate = x/pt |
lower |
lower confidence interval limit |
upper |
upper confidence interval limit |
conf.level |
confidence level |
Author(s)
Tomas Aragon, aragon@berkeley.edu, https://repitools.wordpress.com/; with contributions by Francis Dimzon, fdimzon@yahoo.com; with contributions by Scott Nabity, scott.nabity@sfdph.org
References
Tomas Aragon, et al. Applied Epidemiology Using R. Available at http://www.phdata.science
Leslie Day (1992), "Simple SAS macros for the calculation of exact binomial and Poisson confidence limits." Comput Biol Med, 22(5):351-361
Kenneth Rothman (2002), Epidemiology: An Introduction, Oxford University Press, 1st Edition.
See Also
Examples
pois.exact(1:10)
pois.exact(1:10, 101:110)
pois.daly(1:10)
pois.daly(1:10, 101:110)
pois.byar(1:10)
pois.byar(1:10, 101:110)
pois.approx(1:10)
pois.approx(1:10, 101:110)