| pois.conf.int {epitools} | R Documentation |
Confidence intervals for Poisson counts or rates
Description
Calculates confidence intervals for Poisson counts or rates
Usage
pois.exact(x, pt = 1, conf.level = 0.95)
pois.daly(x, pt = 1, conf.level = 0.95)
pois.byar(x, pt = 1, conf.level = 0.95)
pois.approx(x, pt = 1, conf.level = 0.95)
Arguments
x |
count or vector of counts |
pt |
person-time at risk (default = 1) or vector of person-times |
conf.level |
confidence level (default = 0.95) |
Details
These functions calculate confidence intervals for a Poisson count or
rate using an exact method (pois.exact), gamma distribution
(pois.daly), Byar's formula (pois.byar), or normal
approximation to the Poisson distribution (pois.approx).
To calculate an exact confidence interval for a crude rate (count
divided by person-time at risk), set pt equal to the
person-time at risk. Both x and pt can be either a
number or a vector of numbers.
The pois.daly function gives essentially identical answers to
the pois.exact function except when x = 0. When x = 0, for the
upper confidence limit pois.exact returns 3.689 and
pois.daly returns 2.996.
Value
This function returns a n x 6 matrix with the following colnames:
x |
Poisson count |
pt |
person-time at risk |
rate |
crude rate = x/pt |
lower |
lower confidence interval limit |
upper |
upper confidence interval limit |
conf.level |
confidence level |
Author(s)
Tomas Aragon, aragon@berkeley.edu, https://repitools.wordpress.com/; with contributions by Francis Dimzon, fdimzon@yahoo.com; with contributions by Scott Nabity, scott.nabity@sfdph.org
References
Tomas Aragon, et al. Applied Epidemiology Using R. Available at http://www.phdata.science
Leslie Day (1992), "Simple SAS macros for the calculation of exact binomial and Poisson confidence limits." Comput Biol Med, 22(5):351-361
Kenneth Rothman (2002), Epidemiology: An Introduction, Oxford University Press, 1st Edition.
See Also
Examples
pois.exact(1:10)
pois.exact(1:10, 101:110)
pois.daly(1:10)
pois.daly(1:10, 101:110)
pois.byar(1:10)
pois.byar(1:10, 101:110)
pois.approx(1:10)
pois.approx(1:10, 101:110)