probsens.sel {episensr} | R Documentation |
Probabilistic sensitivity analysis for selection bias.
Description
Probabilistic sensitivity analysis to correct for selection bias.
Usage
probsens.sel(
case,
exposed,
reps = 1000,
or.parms = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
"log-logistic", "log-normal"), parms = NULL),
case.exp = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
"logit-logistic", "logit-normal", "beta"), parms = NULL),
case.nexp = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
"logit-logistic", "logit-normal", "beta"), parms = NULL),
ncase.exp = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
"logit-logistic", "logit-normal", "beta"), parms = NULL),
ncase.nexp = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
"logit-logistic", "logit-normal", "beta"), parms = NULL),
alpha = 0.05
)
Arguments
case |
Outcome variable. If a variable, this variable is tabulated against. |
exposed |
Exposure variable. |
reps |
Number of replications to run. |
or.parms |
List defining the selection bias odds. The first argument provides the probability distribution function (constant, uniform, triangular, trapezoidal, log-logistic or log-normal) and the second its parameters as a vector:
|
case.exp |
If or.parms not provided, defines the selection probability among case exposed. The first argument provides the probability distribution function and the second its parameters as a vector:
|
case.nexp |
Same among cases non-exposed. |
ncase.exp |
Same among non-cases exposed. |
ncase.nexp |
Same among non-cases non-exposed. |
alpha |
Significance level. |
Value
A list with elements:
obs.data |
The analyzed 2 x 2 table from the observed data. |
obs.measures |
A table of observed odds ratio with confidence intervals. |
adj.measures |
A table of corrected odds ratios. |
sim.df |
Data frame of random parameters and computed values. |
reps |
Number of replications. |
References
Lash, T.L., Fox, M.P, Fink, A.K., 2009 Applying Quantitative Bias Analysis to Epidemiologic Data, pp.117–150, Springer.
Examples
# The data for this example come from:
# Stang A., Schmidt-Pokrzywniak A., Lehnert M., Parkin D.M., Ferlay J., Bornfeld N. et al.
# Population-based incidence estimates of uveal melanoma in Germany.
# Supplementing cancer registry data by case-control data.
# Eur J Cancer Prev 2006;15:165-70.
set.seed(123)
probsens.sel(matrix(c(136, 107, 297, 165),
dimnames = list(c("Melanoma+", "Melanoma-"), c("Mobile+", "Mobile-")), nrow = 2, byrow = TRUE),
reps = 20000,
or.parms = list("triangular", c(.35, 1.1, .43)))