probsens.conf {episensr} | R Documentation |
Probabilistic sensitivity analysis for unmeasured confounding.
Description
Probabilistic sensitivity analysis to correct for unknown or unmeasured confounding and random error simultaneously.
Usage
probsens.conf(
case,
exposed,
reps = 1000,
prev.exp = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
"logit-logistic", "logit-normal", "beta"), parms = NULL),
prev.nexp = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
"logit-logistic", "logit-normal", "beta"), parms = NULL),
risk = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
"log-logistic", "log-normal"), parms = NULL),
corr.p = NULL,
discard = TRUE,
alpha = 0.05
)
Arguments
case |
Outcome variable. If a variable, this variable is tabulated against. |
exposed |
Exposure variable. |
reps |
Number of replications to run. |
prev.exp |
List defining the prevalence of exposure among the exposed. The first argument provides the probability distribution function (constant, uniform, triangular, trapezoidal, logit-logistic, logit-normal, or beta) and the second its parameters as a vector. Logit-logistic and logit-normal distributions can be shifted by providing lower and upper bounds. Avoid providing these values if a non-shifted distribution is desired.
|
prev.nexp |
List defining the prevalence of exposure among the unexposed. |
risk |
List defining the confounder-disease relative risk or the confounder-exposure odds ratio. The first argument provides the probability distribution function (constant, uniform, triangular, trapezoidal, log-logistic, or log-normal) and the second its parameters as a vector:
|
corr.p |
Correlation between the exposure-specific confounder prevalences. |
discard |
A logical scalar. In case of negative adjusted count, should the draws be discarded? If set to FALSE, negative counts are set to zero. |
alpha |
Significance level. |
Value
A list with elements:
obs.data |
The analyzed 2 x 2 table from the observed data. |
obs.measures |
A table of observed relative risk and odds ratio with confidence intervals. |
adj.measures |
A table of corrected relative risks and odds ratios. |
sim.df |
Data frame of random parameters and computed values. |
reps |
Number of replications. |
References
Lash, T.L., Fox, M.P, Fink, A.K., 2009 Applying Quantitative Bias Analysis to Epidemiologic Data, pp.117–150, Springer.
Examples
# The data for this example come from:
# Tyndall M.W., Ronald A.R., Agoki E., Malisa W., Bwayo J.J., Ndinya-Achola J.O. et al.
# Increased risk of infection with human immunodeficiency virus type 1 among
# uncircumcised men presenting with genital ulcer disease in Kenya.
# Clin Infect Dis 1996;23:449-53.
set.seed(123)
probsens.conf(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")), nrow = 2, byrow = TRUE),
reps = 20000,
prev.exp = list("triangular", c(.7, .9, .8)),
prev.nexp = list("trapezoidal", c(.03, .04, .05, .06)),
risk = list("triangular", c(.6, .7, .63)),
corr.p = .8)
set.seed(123)
probsens.conf(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")), nrow = 2, byrow = TRUE),
reps = 20000,
prev.exp = list("beta", c(200, 56)),
prev.nexp = list("beta", c(10, 16)),
risk = list("triangular", c(.6, .7, .63)),
corr.p = .8)