plot.episensr.probsens {episensr} | R Documentation |
Plot(s) of probabilistic bias analyses
Description
This takes a probsens
-family object and produces the distribution plot of
chosen bias parameters, as well as distribution of adjusted measures (with confidence
interval).
Usage
## S3 method for class 'episensr.probsens'
plot(
x,
parms = c("rr", "or", "rr_tot", "or_tot", "irr", "irr_tot", "seca", "seexp", "spca",
"spexp", "or_sel", "prev.exp", "prev.nexp", "risk"),
...
)
Arguments
x |
An object of class "episensr.probsens" returned from the
|
parms |
Choice between adjusted relative risk ( |
... |
Other unused arguments. |
See Also
probsens, probsens.sel, probsens.conf,
probsens.irr, probsens.irr.conf
Examples
set.seed(123)
risk <- probsens(matrix(c(45, 94, 257, 945),
dimnames = list(c("BC+", "BC-"), c("Smoke+", "Smoke-")), nrow = 2, byrow = TRUE),
type = "exposure", reps = 20000,
seca.parms = list("trapezoidal", c(.75, .85, .95, 1)),
spca.parms = list("trapezoidal", c(.75, .85, .95, 1)))
plot(risk, "rr")
set.seed(123)
odds <- probsens(matrix(c(45, 94, 257, 945),
dimnames = list(c("BC+", "BC-"), c("Smoke+", "Smoke-")), nrow = 2, byrow = TRUE),
type = "exposure", reps = 20000,
seca.parms = list("beta", c(908, 16)),
seexp.parms = list("beta", c(156, 56)),
spca.parms = list("beta", c(153, 6)),
spexp.parms = list("beta", c(205, 18)),
corr.se = .8,
corr.sp = .8)
plot(odds, "seca")
set.seed(123)
select <- probsens.sel(matrix(c(136, 107, 297, 165),
dimnames = list(c("Melanoma+", "Melanoma-"), c("Mobile+", "Mobile-")),
nrow = 2, byrow = TRUE), reps = 20000,
or.parms = list("triangular", c(.35, 1.1, .43)))
plot(select, "or_sel")
set.seed(123)
conf <- probsens.conf(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")), nrow = 2, byrow = TRUE),
reps = 20000,
prev.exp = list("triangular", c(.7, .9, .8)),
prev.nexp = list("trapezoidal", c(.03, .04, .05, .06)),
risk = list("triangular", c(.6, .7, .63)),
corr.p = .8)
plot(conf, "prev.exp")
set.seed(123)
inc1 <- probsens.irr(matrix(c(2, 67232, 58, 10539000),
dimnames = list(c("GBS+", "Person-time"), c("HPV+", "HPV-")), ncol = 2),
reps = 20000,
seca.parms = list("trapezoidal", c(.4, .45, .55, .6)),
spca.parms = list("constant", 1))
plot(inc1, "irr")
set.seed(123)
inc2 <- probsens.irr.conf(matrix(c(77, 10000, 87, 10000),
dimnames = list(c("D+", "Person-time"), c("E+", "E-")), ncol = 2),
reps = 20000,
prev.exp = list("trapezoidal", c(.01, .2, .3, .51)),
prev.nexp = list("trapezoidal", c(.09, .27, .35, .59)),
risk = list("trapezoidal", c(2, 2.5, 3.5, 4.5)),
corr.p = .8)
plot(inc2, "risk")
[Package episensr version 1.3.0 Index]