multidimBias {episensr} | R Documentation |
Multidimensional sensitivity analysis for different sources of bias
Description
Multidimensional sensitivity analysis for different sources of bias, where the bias analysis is repeated within a range of values for the bias parameter(s).
Usage
multidimBias(
case,
exposed,
type = c("exposure", "outcome", "confounder", "selection"),
se = NULL,
sp = NULL,
bias_parms = NULL,
OR.sel = NULL,
OR_sel = NULL,
alpha = 0.05,
dec = 4,
print = TRUE
)
Arguments
case |
Outcome variable. If a variable, this variable is tabulated against. |
exposed |
Exposure variable. |
type |
Implement analysis for exposure misclassification, outcome misclassification, unmeasured confounder, or selection bias. |
se |
Numeric vector of sensitivities. Parameter used with exposure or outcome misclassification. |
sp |
Numeric vector of specificities. Parameter used with exposure or outcome misclassification. Should be the same length as 'se'. |
bias_parms |
List of bias parameters used with unmeasured confounder. The list is made of 3 vectors of the same length:
|
OR.sel |
Deprecated; please use OR_sel instead. |
OR_sel |
Selection odds ratios, for selection bias implementation. |
alpha |
Significance level. |
dec |
Number of decimals in the printout. |
print |
A logical scalar. Should the results be printed? |
Value
A list with elements:
obs.data |
The analyzed 2 x 2 table from the observed data. |
obs.measures |
A table of odds ratios and relative risk with confidence intervals. |
adj.measures |
Multidimensional corrected relative risk and/or odds ratio data. |
bias.parms |
Bias parameters. |
Examples
multidimBias(matrix(c(45, 94, 257, 945),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "exposure",
se = c(1, 1, 1, .9, .9, .9, .8, .8, .8),
sp = c(1, .9, .8, 1, .9, .8, 1, .9, .8))
multidimBias(matrix(c(45, 94, 257, 945),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "outcome",
se = c(1, 1, 1, .9, .9, .9, .8, .8, .8),
sp = c(1, .9, .8, 1, .9, .8, 1, .9, .8))
multidimBias(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "confounder",
bias_parms = list(seq(.72, .92, by = .02),
seq(.01, .11, by = .01), seq(.13, 1.13, by = .1)))
multidimBias(matrix(c(136, 107, 297, 165),
dimnames = list(c("Uveal Melanoma+", "Uveal Melanoma-"),
c("Mobile Use+", "Mobile Use -")),
nrow = 2, byrow = TRUE),
type = "selection",
OR_sel = seq(1.5, 6.5, by = .5))