| fit_multi {epifitter} | R Documentation | 
Estimate model parameters for multiple disease progress curves
Description
Estimate model parameters for multiple disease progress curves
Usage
fit_multi(time_col,
             intensity_col,
             data,
             strata_cols ,
             starting_par = list(y0 = 0.01, r = 0.03, K =  0.8),
             maxiter=500,
             nlin = FALSE,
             estimate_K = FALSE)
Arguments
time_col | 
 Character name specifying the column for the time. eg: time_col = "days".  | 
intensity_col | 
 Character name specifying the column for the disease intensity.  | 
data | 
 
  | 
strata_cols | 
 Character name or vector specifying the columns for stratification.  | 
starting_par | 
 Starting value for initial inoculun (y0) and apparent infection rate (r). Please informe in that especific order  | 
maxiter | 
 Maximum number of iterations. Only used if is   | 
nlin | 
 Logical. If   | 
estimate_K | 
 Logical. If   | 
Value
Returns a data.frame containing estimated parameters for individual strata levels.
See Also
Examples
set.seed(1)
# create stratified dataset
data_A1 = sim_gompertz(N = 30, y0 = 0.01,dt = 5, r = 0.3, alpha = 0.5, n = 4)
data_A1 = dplyr::mutate(data_A1,
                        fun = "A",
                        cultivar = "BR1")
set.seed(1)
data_B1 = sim_gompertz(N = 30, y0 = 0.01, dt = 5, r = 0.2, alpha = 0.5, n = 4)
data_B1 = dplyr::mutate(data_B1,
                        fun = "B",
                        cultivar = "BR1")
set.seed(1)
data_A2 = sim_gompertz(N = 30, y0 = 0.01,dt = 5, r = 0.1, alpha = 0.5, n = 4)
data_A2 = dplyr::mutate(data_A2,
                        fun = "A",
                        cultivar = "BR2")
set.seed(1)
data_B2 = sim_gompertz(N = 30, y0 = 0.01,dt = 5, r = 0.1, alpha = 0.5, n = 4)
data_B2 = dplyr::mutate(data_B2,
                        fun = "B",
                        cultivar = "BR2")
data = dplyr::bind_rows(data_A1, data_B1,data_A2, data_B2)
fit_multi(time_col = "time",
             intensity_col = "random_y",
             data = data,
             strata_col = c("fun","cultivar"),
             starting_par = list(y0 = 0.01, r = 0.03),
             maxiter = 1024,
             nlin = FALSE,
             estimate_K = FALSE)