roc.plot.ade {epade} | R Documentation |
ROC-curves plot
Description
Function to plot ROC curves with AUC calculation
Usage
roc.plot.ade(pred, event, group=NULL, data=NULL, vnames=NULL,
main="", xlab="1-Specificity", ylab="Sensitivity",
digits=3, pdigs=4, lty=1, lwd=2,
col=NULL, tcol=NULL, bgcol=NULL,
wall=0, test=FALSE, CC=TRUE, auc=TRUE, diag=TRUE, spec=FALSE)
Arguments
pred |
|
event |
|
group |
|
data |
data.frame if used character string for (pred,event,group) |
vnames |
a vector of character strings with the names of groups in the legend |
main |
an overall title for the plot |
xlab |
a title for the x axis |
ylab |
a title for the y axis |
digits |
how many significant digits are to be shown for AUC |
pdigs |
a number indicate how to round p-values.: see ?format.pval.ade |
lty |
a single line type or a vector og line types |
lwd |
the line width |
col |
a vector of colors for each curve |
tcol |
color of the text in whole plot |
bgcol |
the background color for plot dekoration |
wall |
a number between 0 and 6 for selection the dekoration style of the plot. |
test |
logical asking whether to test for the difference between curves |
CC |
logical asking whether to use complete cases for all curves |
auc |
logical asking whether to draw AUC in legend |
diag |
logical asking whether to plot a diagonal line |
spec |
logical asking whether to draw a axis for Specificity at top. |
Details
if test is TRUE the function perform a DeLong-DeLong test for correlated ROC-curves
Examples
# simple curve
event<-rbinom(1000, size=1, prob=0.3)
pred <- event+rnorm(1000)
roc.plot.ade(pred, event)
# grouped
group=rbinom(1000, 1 ,0.5)
roc.plot.ade(pred, event, group, wall=2)
# comparison of two predictors
pred2 <- event+rnorm(1000, 0, 2)
roc.plot.ade(list(pred, pred2), event, test=TRUE, wall=3)