petExtremes {envirem} | R Documentation |
PET Extremes
Description
Calculates summed PET of the coldest, warmest, wettest and driest quarters.
Usage
petExtremes(PETstack, precipStack, meantempStack)
Arguments
PETstack |
SpatRaster of monthly PET, layer names assumed to end in month numbers |
precipStack |
SpatRaster of monthly precipitation |
meantempStack |
SpatRaster of monthly mean temperature |
Details
Generates summed monthly PET for the warmest, coldest, wettest and driest 3 consecutive months. Previous versions of the envirem package incorrectly calculated mean quarterly PET.
Value
SpatRaster of PETColdestQuarter, PETWarmestQuarter, PETWettestQuarter, PETDriestQuarter in mm / month.
Author(s)
Pascal Title
References
Metzger, M.J., Bunce, R.G.H., Jongman, R.H.G., Sayre, R., Trabucco, A. & Zomer, R. (2013). A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. Global Ecology and Biogeography, 22, 630-638.
See Also
Examples
# Find example rasters
rasterFiles <- list.files(system.file('extdata', package='envirem'), full.names=TRUE)
env <- rast(rasterFiles)
# identify the appropriate layers
meantemp <- grep('mean', names(env), value=TRUE)
solar <- grep('solrad', names(env), value=TRUE)
maxtemp <- grep('tmax', names(env), value=TRUE)
mintemp <- grep('tmin', names(env), value=TRUE)
precip <- grep('prec', names(env), value=TRUE)
# read them in as SpatRasters
meantemp <- env[[meantemp]]
solar <- env[[solar]]
maxtemp <- env[[maxtemp]]
mintemp <- env[[mintemp]]
tempRange <- abs(maxtemp - mintemp)
precip <- env[[precip]]
# set up naming scheme - only precip is different from default
assignNames(precip = 'prec_##')
# get monthly PET
pet <- monthlyPET(meantemp, solar, tempRange)
petExtremes(pet, precip, meantemp)
# set back to defaults
assignNames(reset = TRUE)