entropy.NSB {entropy}R Documentation

R Interface to NSB Entropy Estimator

Description

entropy.NSB estimates the Shannon entropy H of the random variable Y from the corresponding observed counts y using the method of Nemenman, Shafee and Bialek (2002).

Note that this function is an R interface to the "nsb-entropy" program. Hence, this needs to be installed separately from http://nsb-entropy.sourceforge.net/.

Usage

entropy.NSB(y, unit=c("log", "log2", "log10"), CMD="nsb-entropy")

Arguments

y

vector of counts.

unit

the unit in which entropy is measured. The default is "nats" (natural units). For computing entropy in "bits" set unit="log2".

CMD

path to the "nsb-entropy" executable.

Details

The NSB estimator is due to Nemenman, Shafee and Bialek (2002). It is a Dirichlet-multinomial entropy estimator, with a hierarchical prior over the Dirichlet pseudocount parameters.

Note that the NSB estimator is not a plug-in estimator, hence there are no explicit underlying bin frequencies.

Value

entropy.NSB returns an estimate of the Shannon entropy.

Author(s)

Jean Hausser.

References

Nemenman, I., F. Shafee, and W. Bialek. 2002. Entropy and inference, revisited. In: Dietterich, T., S. Becker, Z. Gharamani, eds. Advances in Neural Information Processing Systems 14: 471-478. Cambridge (Massachusetts): MIT Press.

See Also

entropy, entropy.shrink, entropy.Dirichlet, entropy.ChaoShen.

Examples

# load entropy library 
library("entropy")

# observed counts for each bin
y = c(4, 2, 3, 0, 2, 4, 0, 0, 2, 1, 1)  

## Not run: 
# estimate entropy using the NSB method
entropy.NSB(y) # 2.187774

## End(Not run)

# compare to empirical estimate
entropy.empirical(y)

[Package entropy version 1.3.0 Index]