ensBMAtest {ensembleBMA} | R Documentation |
Ensemble BMA Test Data Set
Description
This data set gives 48-hour forecasts for 2-m temperature,
precipitation accumulated over the last 24 hours, and maximum wind speed
at SeaTac (KSEA) and Portland (PDX) ariports in 2007/2008 initialized at
00 hours UTC using a 12km grid. The forecasts are based on an 8 member
version of the University of Washington mesoscale ensemble
(Grimit and Mass 2002; Eckel and Mass 2005).
Format
A data frame with 66 rows and 34 columns:
idate
the initialization date of each forecast/observation,
format YYYYMMDDHH (categorical).
vdate
the validation date of each forecast/observation,
format YYYYMMDDHH (categorical).
latitude
the latitude of each forecast/observation (numeric).
longitude
the longitude of each forecast/observation (numeric).
longitude
the elevation (in meters) above sea level (numeric).
station
weather station identifier (categorical).
network
weather network identifier (categorical).
*.gfs,*.cmcg,*.eta,*.gasp,*.jma,*.ngps,*.tcwb
forecasts from the 8 members of the ensemble (numeric).
*.obs
observed values for the weather parameters.
The prefix *
is one of T2
for temperature,
PCP24
for precipitation, MAXWSP10
for wind speed.
Details
Temperature is given in Kelvin.
Precipitation amounts are quantized to hundredths of an inch.
Maximum wind speed is defined as the maximum of the hourly
'instantaneous' wind speeds over the previous 18 hours, where an
hourly 'instantaneous' wind speed is a 2-minute average from the
period of two minutes before the hour to on the hour.
The wind speed observations are measured at 10-m above the ground and
discretized when recorded by rounding to the
nearest meter per second.
This is a small dataset provided for the purposes of testing.
Typically forecasting would be performed on much larger datasets.
References
F. A. Eckel and C. F. Mass, Effective mesoscale, short-range ensemble forecasting, Weather and Forecasting 20:328–350, 2005.
E. P. Grimit and C. F. Mass, Initial results of a mesoscale short-range ensemble forecasting system over the Pacific Northwest, Weather and Forecasting 17:192–205, 2002.
Examples
## Not run: # R check
data(ensBMAtest)
ensMemNames <- c("gfs","cmcg","eta","gasp","jma","ngps","tcwb","ukmo")
#----------------------------------------------------------------------------
obs <- paste("T2","obs", sep = ".")
ens <- paste("T2", ensMemNames, sep = ".")
tempTestData <- ensembleData( forecasts = ensBMAtest[,ens],
dates = ensBMAtest[,"vdate"],
observations = ensBMAtest[,obs],
station = ensBMAtest[,"station"],
forecastHour = 48,
initializationTime = "00")
tempTestFit <- ensembleBMAnormal( tempTestData, trainingDays = 30)
MAE( tempFit, tempTestData)
CRPS( tempFit, tempTestData)
#----------------------------------------------------------------------------
obs <- paste("PCP24","obs", sep = ".")
ens <- paste("PCP24", ensMemNames, sep = ".")
prcpTestData <- ensembleData( forecasts = ensBMAtest[,ens],
dates = ensBMAtest[,"vdate"],
observations = ensBMAtest[,obs],
station = ensBMAtest[,"station"],
forecastHour = 48,
initializationTime = "00")
prcpTestFit <- ensembleBMAgamma0( prcpTestData, trainingDays = 30)
MAE( prcpTestFit, prcpTestData)
CRPS( prcpTestFit, prcpTestData)
#----------------------------------------------------------------------------
obs <- paste("MAXWSP10","obs", sep = ".")
ens <- paste("MAXWSP10", ensMemNames, sep = ".")
winsTestData <- ensembleData( forecasts = ensBMAtest[,ens],
dates = ensBMAtest[,"vdate"],
observations = ensBMAtest[,obs],
station = ensBMAtest[,"station"],
forecastHour = 48,
initializationTime = "00")
winsTestFit <- ensembleBMAgamma(winsTestData, trainingDays = 30)
MAE( winsTestFit, winsTestData)
CRPS( winsTestFit, winsTestData)
## End(Not run)