cv.enspls {enpls} | R Documentation |
Cross Validation for Ensemble Sparse Partial Least Squares Regression
Description
K-fold cross validation for ensemble sparse partial least squares regression.
Usage
cv.enspls(x, y, nfolds = 5L, verbose = TRUE, ...)
Arguments
x |
Predictor matrix. |
y |
Response vector. |
nfolds |
Number of cross-validation folds, default is |
verbose |
Shall we print out the progress of cross-validation? |
... |
Arguments to be passed to |
Value
A list containing:
-
ypred
- a matrix containing two columns: real y and predicted y -
residual
- cross validation result (y.pred - y.real) -
RMSE
- RMSE -
MAE
- MAE -
Rsquare
- Rsquare
Note
To maximize the probablity that each observation can
be selected in the test set (thus the prediction uncertainty
can be measured), please try setting a large reptimes
.
Author(s)
Nan Xiao <https://nanx.me>
See Also
See enspls.fit
for ensemble sparse
partial least squares regressions.
Examples
# This example takes one minute to run
## Not run:
data("logd1k")
x <- logd1k$x
y <- logd1k$y
set.seed(42)
cvfit <- cv.enspls(x, y, reptimes = 10)
print(cvfit)
plot(cvfit)
## End(Not run)