pln_probit {endogeneity} | R Documentation |
Recursive PLN-Probit Model
Description
Estimate a Poisson Lognormal model and a Probit model with bivariate normally distributed error/heterogeneity terms.
First stage (Poisson Lognormal):
E[m_i|w_i,u_i]=exp(\boldsymbol{\alpha}'\mathbf{w_i}+\lambda u_i)
Second stage (Probit):
y_i = 1(\boldsymbol{\beta}'\mathbf{x_i} + {\gamma}m_i + \sigma v_i > 0)
Endogeneity structure:
u_i
and v_i
are bivariate normally distributed with a correlation of \rho
.
This model is typically well-identified even if w and x are the same set of variables. This model still works if the first-stage dependent variable is not a regressor in the second stage.
Usage
pln_probit(
form_pln,
form_probit,
data = NULL,
par = NULL,
method = "BFGS",
init = c("zero", "unif", "norm", "default")[4],
H = 20,
verbose = 0
)
Arguments
form_pln |
Formula for the first-stage Poisson lognormal model |
form_probit |
Formula for the second-stage probit model |
data |
Input data, a data frame |
par |
Starting values for estimates |
method |
Optimization algorithm. Without gradient, NM is much faster than BFGS |
init |
Initialization method |
H |
Number of quadrature points |
verbose |
A integer indicating how much output to display during the estimation process.
|
Value
A list containing the results of the estimated model, some of which are inherited from the return of maxLik
estimates: Model estimates with 95% confidence intervals. Prefix "pln" means first stage variables.
estimate or par: Point estimates
variance_type: covariance matrix used to calculate standard errors. Either BHHH or Hessian.
var: covariance matrix
se: standard errors
gradient: Gradient function at maximum
hessian: Hessian matrix at maximum
gtHg:
g'H^-1g
, where H^-1 is simply the covariance matrix. A value close to zero (e.g., <1e-3 or 1e-6) indicates good convergence.LL or maximum: Likelihood
AIC: AIC
BIC: BIC
n_obs: Number of observations
n_par: Number of parameters
LR_stat: Likelihood ratio test statistic for
\rho=0
LR_p: p-value of likelihood ratio test
iterations: number of iterations taken to converge
message: Message regarding convergence status.
Note that the list inherits all the components in the output of maxLik. See the documentation of maxLik for more details.
References
Peng, Jing. (2023) Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis. Information Systems Research, 34(1):67-84. Available at https://doi.org/10.1287/isre.2022.1113
See Also
Other endogeneity:
bilinear()
,
biprobit_latent()
,
biprobit_partial()
,
biprobit()
,
linear_probit()
,
pln_linear()
,
probit_linearRE()
,
probit_linear_latent()
,
probit_linear_partial()
,
probit_linear()
Examples
library(MASS)
N = 2000
rho = -0.5
set.seed(1)
x = rbinom(N, 1, 0.5)
z = rnorm(N)
e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]
m = rpois(N, exp(-1 + x + z + e1))
y = as.numeric(1 + x + z + log(1+m) + e2 > 0)
est = pln_probit(m~x+z, y~x+z+log(1+m))
print(est$estimates, digits=3)