biprobit {endogeneity}R Documentation

Recusrive Bivariate Probit Model

Description

Estimate two probit models with bivariate normally distributed error terms.

First stage (Probit):

m_i=1(\boldsymbol{\alpha}'\mathbf{w_i}+u_i>0)

Second stage (Probit):

y_i = 1(\boldsymbol{\beta}'\mathbf{x_i} + {\gamma}m_i + \sigma v_i>0)

Endogeneity structure: u_i and v_i are bivariate normally distributed with a correlation of \rho.

w and x can be the same set of variables. Identification can be weak if w are not good predictors of m. This model still works if the first-stage dependent variable is not a regressor in the second stage.

Usage

biprobit(form1, form2, data = NULL, par = NULL, method = "BFGS", verbose = 0)

Arguments

form1

Formula for the first probit model

form2

Formula for the second probit model

data

Input data, a data frame

par

Starting values for estimates

method

Optimization algorithm. Default is BFGS

verbose

A integer indicating how much output to display during the estimation process.

  • <0 - No ouput

  • 0 - Basic output (model estimates)

  • 1 - Moderate output, basic ouput + parameter and likelihood in each iteration

  • 2 - Extensive output, moderate output + gradient values on each call

Value

A list containing the results of the estimated model, some of which are inherited from the return of maxLik

Note that the list inherits all the components in the output of maxLik. See the documentation of maxLik for more details.

References

Peng, Jing. (2023) Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis. Information Systems Research, 34(1):67-84. Available at https://doi.org/10.1287/isre.2022.1113

See Also

Other endogeneity: bilinear(), biprobit_latent(), biprobit_partial(), linear_probit(), pln_linear(), pln_probit(), probit_linearRE(), probit_linear_latent(), probit_linear_partial(), probit_linear()

Examples

library(MASS)
N = 2000
rho = -0.5
set.seed(1)

x = rbinom(N, 1, 0.5)
z = rnorm(N)

e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]

m = as.numeric(1 + x + z + e1 > 0)
y = as.numeric(1 + x + z + m + e2 > 0)

est = biprobit(m~x+z, y~x+z+m)
print(est$estimates, digits=3)

[Package endogeneity version 2.1.3 Index]