emplikH1B {emplik} | R Documentation |
Return binomial empirical likelihood ratio for the given lambda, with right censored data
Description
Compute the binomial empirical likelihood ratio for the given tilt parameter lambda.
Most useful for construct Wilks confidence intervals.
The null hypothesis or constraint is defined by the parameter \theta
, where
\int fung(t) d log(1-H(t)) = \theta
.
Where H(t)
is the unknown
cumulative hazard function; fung(t)
can be any given function.
In the future, the function fung
may replaced by the vector of fung(x)
,
since this is more flexible.
Input data can be right censored. If no censoring, set d=rep(1, length(x))
.
Usage
emplikH1B(lambda, x, d, fung, CIforTheta=FALSE)
Arguments
lambda |
a scalar. Can be positive or negative. The amount of tiling. |
x |
a vector of the censored survival times. |
d |
a vector of the censoring indicators, 1-uncensor; 0-right censor. |
fung |
a left continuous (weight) function used to calculate
the weighted hazard in the parameter |
CIforTheta |
an optional logical value. Default to FALSE. If set to TRUE, will return the integrated hazard value for the given lambda. |
Details
This function is used to calculate lambda confidence interval (Wilks type) for \theta
.
This function is designed for the case where the true distribution should be discrete. Ties in the data are OK.
The log empirical likelihood used here is the ‘binomial’ version empirical likelihood:
\sum_{i=1}^n \delta_i \log (dH(x_i)) + (R_i - \delta_i)\log [1- dH(x_i) ] .
Value
A list with the following components:
times |
the location of the hazard jumps. |
jumps |
the jump size of hazard function at those locations. |
lambda |
the input lambda. |
"-2LLR" |
the -2Log Likelihood ratio. |
IntHaz |
The theta defined above, for the given lambda. |
Author(s)
Mai Zhou
References
Pan, X. and Zhou, M. (2002), “Empirical likelihood in terms of hazard for censored data”. Journal of Multivariate Analysis 80, 166-188.
Examples
## fun <- function(x) { as.numeric(x <= 6.5) }
## emplikH1.test( x=c(1,2,3,4,5), d=c(1,1,0,1,1), theta=2, fun=fun)
## fun2 <- function(x) {exp(-x)}
## emplikH1.test( x=c(1,2,3,4,5), d=c(1,1,0,1,1), theta=0.2, fun=fun2)