boot_ML {emery} | R Documentation |
Bootstrap ML accuracy statistic estimation for multi-method data
Description
boot_ML()
is a function used to generate bootstrap estimates of results generated
by estimate_ML()
primarily for use in creating nonparametric confidence intervals.
Usage
boot_ML(
type = c("binary", "ordinal", "continuous"),
data,
n_boot = 100,
max_iter = 1000,
tol = 1e-07,
seed = NULL,
...
)
Arguments
type |
A string specifying the data type of the methods under evaluation. |
data |
An |
n_boot |
number of bootstrap estimates to compute |
max_iter |
The maximum number of EM algorithm iterations to compute before reporting a result. |
tol |
The minimum change in statistic estimates needed to continue iterating the EM algorithm. |
seed |
optional seed for RNG |
... |
Additional arguments |
Value
a list containing accuracy estimates, v
, and the parameters used.
v_0 |
result from original data |
v_star |
list containing results from each bootstrap resampling |
params |
list containing the parameters used |
Examples
# Set seed for this example
set.seed(11001101)
# Generate data for 4 binary methods
my_sim <- generate_multimethod_data(
"binary",
n_obs = 75,
n_method = 4,
se = c(0.87, 0.92, 0.79, 0.95),
sp = c(0.85, 0.93, 0.94, 0.80),
method_names = c("alpha", "beta", "gamma", "delta"))
# Bootstrap ML results
boot_ex <- boot_ML(
"binary",
data = my_sim$generated_data,
n_boot = 20)