Generic EM Algorithm


[Up] [Top]

Documentation for package ‘em’ version 1.0.0

Help Pages

cstep C-Step of EM algorithm
em A Generic EM Algorithm
em.clogit The em function for 'survival::clogit'.
em.default The default em function
em.fitdist The default em function
em.glmerMod The em function for glmerMod
em.panelmodel The em function for 'panelmodel' such as 'plm'.
estep This function performs an E-Step of EM Algorithm.
fit.den Fit the density function for a fitted model.
fit.den.coxph Fit the density for the survival::clogit
fit.den.fitdist Fitting the density function using in 'fitdistrplus::fitdist()'
fit.den.glm Fit the density function for a generalized linear regression model.
fit.den.glmerMod Fit the density function for a generalized linear mixed effect model.
fit.den.gnm Fit the density function for a generalized non-linear regression model.
fit.den.lm Fit the density function for a linear regression model.
fit.den.multinom Fit the density function for a multinomial regression model.
fit.den.nnet Fit the density function for a 'nnet' model.
fit.den.plm Fit the density function for a panel regression model.
flatten Flatten a data.frame or matrix by column or row with its name. The name will be transformed into the number of row/column plus the name of column/row separated by '.'.
init.em Initialization of EM algorithm
init.em.hc model-based agglomerative hierarchical clustering
init.em.kmeans K-mean initialization
init.em.random Random initialization
init.em.random.weights Random initialization with weights
init.em.sample5 Initialization using sampling 5 times.
logLik.em This function computes logLik of EM Algorithm.
mstep M-Step of EM algorithm
mstep.concomitant The mstep for the concomitant model.
mstep.concomitant.refit The refit of for the concomitant model. This section was inspired by Flexmix.
multi.em Multiple run of EM algorithm
multi.em.default Default generic for multi.em
plot.em Plot the fitted results of EM algorithm
predict.em Predict the fitted finite mixture models
print.em Print the 'em' object
print.summary.em Print the 'summary.em' object
simbinom Simulated Data from a logistic regression
simclogit Simulated Data from a conditional logistic regression
simreg Simulated Regression Data
sstep S-step of EM algorithm
summary.em Summaries of fitted finite mixture models using EM algorithm
vdummy Transform a factor variable to a matrix of dummy variables