categorize {elsa} | R Documentation |
Categorizing continious data
Description
A function to categorize (discretize or binning) numerical data in the form of a raster layer, or a vector.
Usage
categorize(x,nc,probs,...)
Arguments
x |
A |
nc |
Number of classes, if missing, it will be automatically detected |
probs |
a two-item numeric vector of the lower and upper probabilities within the range of [0,1], e.g., c(0.025, 0.975) (default: NULL) to consider a quantile range of values in categorization (to avoid the effects of outliers); if |
... |
Additional parameters for |
Details
If nc is not specified, the function calls the function nclass
to find the best number of classes. For the details of how nclass works, see the reference.
When outliers do exist in x
, it is likely that they affect the quality of categorization. To avoid their affects, a quantile with the specified probabilities can be used. default is recommended: c(0.025,0.975), but to ignore it, you can turn the probs argument to NULL
.
Value
RasterLayer |
if x is a |
numeric vector |
if x is a numeric |
Author(s)
Babak Naimi naimi.b@gmail.com
References
Naimi, B., Hamm, N. A., Groen, T. A., Skidmore, A. K., Toxopeus, A. G., & Alibakhshi, S. (2019). ELSA: Entropy-based local indicator of spatial association. Spatial statistics, 29, 66-88.
Examples
categorize(1:10,3) # categorizeing a numeric vector into 3 categories
file <- system.file('external/dem_example.grd',package='elsa')
r <- raster(file)
plot(r,main='a continuous raster map')
rc <- categorize(r,nc=4)
plot(rc, main='categorized map')