ellipse.profile.glm {ellipse} | R Documentation |
Pairwise profile sketch for GLM profiles
Description
This routine approximates a pairwise confidence region for a glm
model.
Usage
## S3 method for class 'profile.glm'
ellipse(x, which = c(1, 2), level = 0.95, t,
npoints = 100, dispersion, ...)
Arguments
x |
An object of class |
which |
Which pair of parameters to use. |
level |
The |
t |
The square root of the value to be contoured. By default, this is |
npoints |
How many points to use in the ellipse. |
dispersion |
If specified, fixed dispersion is assumed, otherwise the dispersion is taken from the model. |
... |
Extra parameters which are not used (for compatibility with the generic). |
Details
This function uses the 4 point approximation to the contour as described in Appendix 6 of Bates and Watts (1988). It produces the exact contour for quadratic surfaces, and good approximations for mild deviations from quadratic. If the surface is multimodal, the algorithm is likely to produce nonsense.
Value
An npoints
x 2
matrix with columns having the chosen parameter names,
which approximates a contour of the function that was profiled.
References
Bates and Watts (1988). Nonlinear Regression Analysis and Its Applications. Wiley. doi:10.1002/9780470316757.
See Also
Examples
## MASS has a pairs.profile function that conflicts with ours, so
## do a little trickery here
noMASS <- is.na(match('package:MASS', search()))
if (noMASS) require(MASS)
## Dobson (1990) Page 93: Randomized Controlled Trial :
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
glm.D93 <- glm(counts ~ outcome + treatment, family=poisson())
## Plot an approximate 95% confidence region for the two outcome variables
prof.D93 <- profile(glm.D93)
plot(ellipse(prof.D93, which = 2:3), type = 'l')
lines(ellipse(glm.D93, which = 2:3), lty = 2)
params <- glm.D93$coefficients
points(params[2],params[3])
## Clean up our trickery
if (noMASS) detach('package:MASS')