Kw-CWG {elfDistr} | R Documentation |
Kumaraswamy Complementary Weibull Geometric Probability Distribution
Description
Density, distribution function, quantile function and random generation for the Kumaraswamy Complementary Weibull Geometric (Kw-CWG) probability distribution.
Usage
dkwcwg(x, alpha, beta, gamma, a, b, log = FALSE)
pkwcwg(q, alpha, beta, gamma, a, b, lower.tail = TRUE, log.p = FALSE)
qkwcwg(p, alpha, beta, gamma, a, b, lower.tail = TRUE, log.p = FALSE)
rkwcwg(n, alpha, beta, gamma, a, b)
Arguments
x , q |
vector of quantiles. |
alpha , beta , gamma , a , b |
Parameters of the distribution. 0 < alpha < 1, and the other parameters mustb e positive. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. If |
Details
Probability density function
f(x) = \alpha^a \beta \gamma a b (\gamma x)^{\beta - 1} \exp[-(\gamma x)^\beta] \cdot
\frac{\{1 - \exp[-(\gamma x)^\beta]\}^{a-1}}{\{ \alpha + (1 - \alpha) \exp[-(\gamma x)^\beta] \}^{a+1}} \cdot
\cdot \bigg\{ 1 - \frac{\alpha^a[1 - \exp[-(\gamma x)^\beta]]^a}{\{ \alpha + (1 - \alpha) \exp[-(\gamma x)^\beta] \}^a} \bigg\}
Cumulative density function
F(x) = 1 - \bigg\{ 1 - \bigg[ \frac{\alpha (1 - \exp[-(\gamma x)^\beta]) }{ \alpha + (1 - \alpha) \exp[-(\gamma x)^\beta] } \bigg]^a \bigg\}^b
Quantile function
Q(u) = \gamma^{-1} \bigg\{
\log\bigg[\frac{
\alpha + (1 - \alpha) \sqrt[a]{1 - \sqrt[b]{1 - u} }
}{
\alpha (1 - \sqrt[a]{1 - \sqrt[b]{1 - u} } )
}\bigg]
\bigg\}^{1/\beta}, 0 < u < 1
References
Afify, A.Z., Cordeiro, G.M., Butt, N.S., Ortega, E.M. and Suzuki, A.K. (2017). A new lifetime model with variable shapes for the hazard rate. Brazilian Journal of Probability and Statistics