Kw-CWG {elfDistr} | R Documentation |
Kumaraswamy Complementary Weibull Geometric Probability Distribution
Description
Density, distribution function, quantile function and random generation for the Kumaraswamy Complementary Weibull Geometric (Kw-CWG) probability distribution.
Usage
dkwcwg(x, alpha, beta, gamma, a, b, log = FALSE)
pkwcwg(q, alpha, beta, gamma, a, b, lower.tail = TRUE, log.p = FALSE)
qkwcwg(p, alpha, beta, gamma, a, b, lower.tail = TRUE, log.p = FALSE)
rkwcwg(n, alpha, beta, gamma, a, b)
Arguments
x , q |
vector of quantiles. |
alpha , beta , gamma , a , b |
Parameters of the distribution. 0 < alpha < 1, and the other parameters mustb e positive. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. If |
Details
Probability density function
Cumulative density function
Quantile function
References
Afify, A.Z., Cordeiro, G.M., Butt, N.S., Ortega, E.M. and Suzuki, A.K. (2017). A new lifetime model with variable shapes for the hazard rate. Brazilian Journal of Probability and Statistics