arrayspc {elasticnet} | R Documentation |
Sparse PCs of Microarrays
Description
Sparse PC by iterative SVD and soft-thresholding
Usage
arrayspc(x,K=1,para,use.corr=FALSE, max.iter=200,trace=FALSE,eps=1e-3)
Arguments
x |
The microarray matrix. |
K |
Number of components. Default is 1. |
para |
The thresholding parameters. A vector of length K. |
use.corr |
Perform PCA on the correlation matrix? This option is only effective when the argument type is set "data". |
max.iter |
Maximum number of iterations. |
trace |
If TRUE, prints out its progress. |
eps |
Convergence criterion. |
Details
The function is equivalent to a special case of spca() with the quadratic penalty=infinity. It is specifically designed for the case p>>n, like microarrays.
Value
A "arrayspc" object is returned.
Author(s)
Hui Zou and Trevor Hastie
References
Zou, H., Hastie, T. and Tibshirani, R. (2006) "Sparse principal component analysis" Journal of Computational and Graphical Statistics, 15 (2), 265–286.
See Also
spca, princomp
[Package elasticnet version 1.3 Index]